
David S K Magnuson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9008108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Promoting FAIR Data Through Community-driven Agile Design: the Open Data Commons for Spinal Cord Injury (odc-sci.org). Neuroinformatics, 2022, 20, 203-219.	2.8	10
2	Broad opioid antagonism amplifies disruption of locomotor function following therapy-like hindlimb stretching in spinal cord injured rats. Spinal Cord, 2022, 60, 312-319.	1.9	2
3	Spinal Interneurons as Gatekeepers to Neuroplasticity after Injury or Disease. Journal of Neuroscience, 2021, 41, 845-854.	3.6	39
4	Dual-Viral Transduction Utilizing Highly Efficient Retrograde Lentivirus Improves Labeling of Long Propriospinal Neurons. Frontiers in Neuroanatomy, 2021, 15, 635921.	1.7	5
5	Effects of early exercise training on the severity of autonomic dysreflexia following incomplete spinal cord injury in rodents. Physiological Reports, 2021, 9, e14969.	1.7	7
6	Markers of susceptibility to cardiac arrhythmia in experimental spinal cord injury and the impact of sympathetic stimulation and exercise training. Autonomic Neuroscience: Basic and Clinical, 2021, 235, 102867.	2.8	2
7	Protocol for rapid onset of mobilisation in patients with traumatic spinal cord injury (PROMPT-SCI) study: a single-arm proof-of-concept trial of early in-bed leg cycling following acute traumatic spinal cord injury. BMJ Open, 2021, 11, e049884.	1.9	2
8	Silencing long ascending propriospinal neurons after spinal cord injury improves hindlimb stepping in the adult rat. ELife, 2021, 10, .	6.0	17
9	FAIR SCI Ahead: The Evolution of the Open Data Commons for Pre-Clinical Spinal Cord Injury Research. Journal of Neurotrauma, 2020, 37, 831-838.	3.4	27
10	Evidence That the Central Nervous System Can Induce a Modification at the Neuromuscular Junction That Contributes to the Maintenance of a Behavioral Response. Journal of Neuroscience, 2020, 40, 9186-9209.	3.6	2
11	RNA-seq data of soleus muscle tissue after spinal cord injury under conditions of inactivity and applied exercise. Data in Brief, 2020, 28, 105056.	1.0	1
12	Treadmill-Based Gait Kinematics in the Yucatan Mini Pig. Journal of Neurotrauma, 2020, 37, 2277-2291.	3.4	12
13	Long ascending propriospinal neurons provide flexible, context-specific control of interlimb coordination. ELife, 2020, 9, .	6.0	29
14	Transcriptome of dorsal root ganglia caudal to a spinal cord injury with modulated behavioral activity. Scientific Data, 2019, 6, 83.	5.3	7
15	Activity/exercise-induced changes in the liver transcriptome after chronic spinal cord injury. Scientific Data, 2019, 6, 88.	5.3	9
16	Nociceptor-dependent locomotor dysfunction after clinically-modeled hindlimb muscle stretching in adult rats with spinal cord injury. Experimental Neurology, 2019, 318, 267-276.	4.1	11
17	Electromyographic patterns of the rat hindlimb in response to muscle stretch after spinal cord injury. Spinal Cord, 2018, 56, 560-568.	1.9	16
18	Challenging cardiac function post-spinal cord injury with dobutamine. Autonomic Neuroscience: Basic and Clinical, 2018, 209, 19-24.	2.8	14

DAVID S K MAGNUSON

#	Article	IF	CITATIONS
19	Spinal Cord Injury Causes Systolic Dysfunction and Cardiomyocyte Atrophy. Journal of Neurotrauma, 2018, 35, 424-434.	3.4	28
20	Temporal analysis of cardiovascular control and function following incomplete T3 and T10 spinal cord injury in rodents. Physiological Reports, 2018, 6, e13634.	1.7	8
21	Disruption of Locomotion in Response to Hindlimb Muscle Stretch at Acute and Chronic Time Points after a Spinal Cord Injury in Rats. Journal of Neurotrauma, 2017, 34, 661-670.	3.4	12
22	Introduction to the Special Issue on Locomotor Rehabilitation after Spinal Cord Injury. Journal of Neurotrauma, 2017, 34, 1711-1712.	3.4	4
23	Dynamic "Range of Motion―Hindlimb Stretching Disrupts Locomotor Function in Rats with Moderate Subacute Spinal Cord Injuries. Journal of Neurotrauma, 2017, 34, 2086-2091.	3.4	9
24	A comparison of passive hindlimb cycling and active upper-limb exercise provides new insights into systolic dysfunction after spinal cord injury. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H861-H870.	3.2	22
25	Reversible silencing of lumbar spinal interneurons unmasks a task-specific network for securing hindlimb alternation. Nature Communications, 2017, 8, 1963.	12.8	32
26	Hindlimb Stretching Alters Locomotor Function After Spinal Cord Injury in the Adult Rat. Neurorehabilitation and Neural Repair, 2015, 29, 268-277.	2.9	24
27	Large animal and primate models of spinal cord injury for the testing of novel therapies. Experimental Neurology, 2015, 269, 154-168.	4.1	75
28	Challenges of animal models in SCI research: Effects of pre-injury task-specific training in adult rats before lesion. Behavioural Brain Research, 2015, 291, 26-35.	2.2	14
29	Development of a Database for Translational Spinal Cord Injury Research. Journal of Neurotrauma, 2014, 31, 1789-1799.	3.4	100
30	N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma. Experimental Neurology, 2014, 257, 95-105.	4.1	84
31	Functional consequences of ethidium bromide demyelination of the mouse ventral spinal cord. Experimental Neurology, 2013, 247, 615-622.	4.1	27
32	Cervical response among ascending ventrolateral funiculus pathways of the neonatal rat. Brain Research, 2013, 1491, 136-146.	2.2	4
33	Consequences of Common Data Analysis Inaccuracies in CNS Trauma Injury Basic Research. Journal of Neurotrauma, 2013, 30, 797-805.	3.4	15
34	Functional testing in animal models of spinal cord injury: not as straight forward as one would think. Frontiers in Integrative Neuroscience, 2013, 7, 85.	2.1	45
35	Bone Loss following Spinal Cord Injury in a Rat Model. Journal of Neurotrauma, 2012, 29, 1676-1682.	3.4	23
36	Acetyl-l-carnitine treatment following spinal cord injury improves mitochondrial function correlated with remarkable tissue sparing and functional recovery. Neuroscience, 2012, 210, 296-307.	2.3	62

#	Article	IF	CITATIONS
37	Comprehensive locomotor outcomes correlate to hyperacute diffusion tensor measures after spinal cord injury in the adult rat. Experimental Neurology, 2012, 235, 188-196.	4.1	48
38	The Transcriptional Response of Neurotrophins and Their Tyrosine Kinase Receptors in Lumbar Sensorimotor Circuits to Spinal Cord Contusion is Affected by Injury Severity and Survival Time. Frontiers in Physiology, 2012, 3, 478.	2.8	13
39	Basso, Beattie, and Bresnahan Scale Locomotor Assessment Following Spinal Cord Injury and Its Utility as a Criterion for Other Assessments. Springer Protocols, 2012, , 591-604.	0.3	6
40	Swimming as an Assessment of Hindlimb Function in Animals with Traumatic Spinal Cord Injury. Springer Protocols, 2012, , 663-677.	0.3	0
41	Automated Gait Analysis Following Spinal Cord Injury. Springer Protocols, 2012, , 625-638.	0.3	0
42	A Grading System To Evaluate Objectively the Strength of Pre-Clinical Data of Acute Neuroprotective Therapies for Clinical Translation in Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 1525-1543.	3.4	83
43	Initiation of segmental locomotor-like activities by stimulation of ventrolateral funiculus in the neonatal rat. Experimental Brain Research, 2011, 214, 151-161.	1.5	5
44	Hindlimb Immobilization in a Wheelchair Alters Functional Recovery Following Contusive Spinal Cord Injury in the Adult Rat. Neurorehabilitation and Neural Repair, 2011, 25, 729-739.	2.9	58
45	Transplantation of Ciliary Neurotrophic Factor-Expressing Adult Oligodendrocyte Precursor Cells Promotes Remyelination and Functional Recovery after SpinalCord Injury. Journal of Neuroscience, 2010, 30, 2989-3001.	3.6	193
46	Task-specificity vs. ceiling effect: Step-training in shallow water after spinal cord injury. Experimental Neurology, 2010, 224, 178-187.	4.1	76
47	Swim Training Initiated Acutely after Spinal Cord Injury Is Ineffective and Induces Extravasation In and Around the Epicenter. Journal of Neurotrauma, 2009, 26, 1017-1027.	3.4	56
48	Anatomical and Functional Outcomes following a Precise, Graded, Dorsal Laceration Spinal Cord Injury in C57BL/6 Mice. Journal of Neurotrauma, 2009, 26, 1-15.	3.4	101
49	Gait Analysis in Normal and Spinal Contused Mice Using the TreadScan System. Journal of Neurotrauma, 2009, 26, 2045-2056.	3.4	93
50	Swimming as a Model of Task-Specific Locomotor Retraining After Spinal Cord Injury in the Rat. Neurorehabilitation and Neural Repair, 2009, 23, 535-545.	2.9	70
51	Anterograde labeling of ventrolateral funiculus pathways with spinal enlargement connections in the adult rat spinal cord. Brain Research, 2009, 1302, 76-84.	2.2	41
52	Swim training initiated acutely after spinal cord injury is ineffective and induces extravasation in and around the epicenter. Journal of Neurotrauma, 2009, 26, 110306202455053.	3.4	43
53	Rolipram attenuates acute oligodendrocyte death in the adult rat ventrolateral funiculus following contusive cervical spinal cord injury. Neuroscience Letters, 2008, 438, 200-204.	2.1	64
54	Reticulospinal pathways in the ventrolateral funiculus with terminations in the cervical and lumbar enlargements of the adult rat spinal cord. Neuroscience, 2008, 151, 505-517.	2.3	32

#	Article	IF	CITATIONS
55	Spinal Cord Contusion Based on Precise Vertebral Stabilization and Tissue Displacement Measured by Combined Assessment to Discriminate Small Functional Differences. Journal of Neurotrauma, 2008, 25, 1227-1240.	3.4	55
56	Optimizing Stem Cell Grafting into the CNS. Methods in Molecular Biology, 2008, 438, 375-382.	0.9	7
57	Use of magnetic stimulation to elicit motor evoked potentials, somatosensory evoked potentials, and H-reflexes in non-sedated rodents. Journal of Neuroscience Methods, 2007, 165, 9-17.	2.5	36
58	The Louisville Swim Scale: A Novel Assessment of Hindlimb Function following Spinal Cord Injury in Adult Rats. Journal of Neurotrauma, 2006, 23, 1654-1670.	3.4	77
59	Effects of Swimming on Functional Recovery after Incomplete Spinal Cord Injury in Rats. Journal of Neurotrauma, 2006, 23, 908-919.	3.4	89
60	Magnetically evoked inter-enlargement response: An assessment of ascending propriospinal fibers following spinal cord injury. Experimental Neurology, 2006, 201, 428-440.	4.1	32
61	Inter-enlargement pathways in the ventrolateral funiculus of the adult rat spinal cord. Neuroscience, 2006, 142, 1195-1207.	2.3	75
62	Neuroregeneration in Composite Tissue Allografts: Effect of Low-Dose FK506 and Mycophenolate Mofetil Immunotherapy. Plastic and Reconstructive Surgery, 2006, 118, 615-623.	1.4	21
63	Inhibition of EphA7 up-regulation after spinal cord injury reduces apoptosis and promotes locomotor recovery. Journal of Neuroscience Research, 2006, 84, 1438-1451.	2.9	51
64	Adult rat forelimb dysfunction after dorsal cervical spinal cord injury. Experimental Neurology, 2005, 192, 25-38.	4.1	65
65	Functional Consequences of Lumbar Spinal Cord Contusion Injuries in the Adult Rat. Journal of Neurotrauma, 2005, 22, 529-543.	3.4	101
66	Human chorionic gonadotropin/luteinizing hormone receptor expression in the adult rat spinal cord. Neuroscience Letters, 2003, 336, 135-138.	2.1	14
67	Techniques for Studying the Electrophysiology of Neurons Derived from Neural Stem/Progenitor Cells. , 2002, 198, 179-186.		0
68	Both Dorsal and Ventral Spinal Cord Pathways Contribute to Overground Locomotion in the Adult Rat. Experimental Neurology, 2002, 177, 575-580.	4.1	111
69	Functional Redundancy of Ventral Spinal Locomotor Pathways. Journal of Neuroscience, 2002, 22, 315-323.	3.6	152
70	Neurons labeled from locomotor-related ventrolateral funiculus stimulus sites in the neonatal rat spinal cord. Journal of Comparative Neurology, 2002, 442, 226-238.	1.6	23
71	Embryonic brain precursors transplanted into kainate lesioned rat spinal cord. NeuroReport, 2001, 12, 1015-1019.	1.2	16
72	Non-stationary analysis of extracellular neural activity. Neurocomputing, 2000, 32-33, 1083-1093.	5.9	7

DAVID S K MAGNUSON

#	Article	IF	CITATIONS
73	Lasting paraplegia caused by loss of lumbar spinal cord interneurons in rats: no direct correlation with motor neuron loss. Journal of Neurosurgery: Spine, 2000, 93, 266-275.	1.7	23
74	Mitogen and Substrate Differentially Affect the Lineage Restriction of Adult Rat Subventricular Zone Neural Precursor Cell Populations. Experimental Cell Research, 1999, 252, 75-95.	2.6	134
75	Comparing Deficits Following Excitotoxic and Contusion Injuries in the Thoracic and Lumbar Spinal Cord of the Adult Rat. Experimental Neurology, 1999, 156, 191-204.	4.1	194
76	Electrophysiological Properties of Mitogen-Expanded Adult Rat Spinal Cord and Subventricular Zone Neural Precursor Cells. Experimental Neurology, 1999, 158, 143-154.	4.1	44
77	Lumbar Spinoreticular Neurons in the Rat: Part of the Central Pattern Generator for Locomotion?a. Annals of the New York Academy of Sciences, 1998, 860, 436-440.	3.8	12
78	Neuronal excitatory properties of human immunodeficiency virus type 1 tat protein. Neuroscience, 1997, 82, 97-106.	2.3	134
79	Locomotor Rhythm Evoked by Ventrolateral Funiculus Stimulation in the Neonatal Rat Spinal Cord In Vitro. Journal of Neurophysiology, 1997, 77, 200-206.	1.8	67
80	Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. Journal of Virology, 1996, 70, 1475-1480.	3.4	308
81	Human immunodeficiency virus type 1 tat activates non?N-methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity. Annals of Neurology, 1995, 37, 373-380.	5.3	286
82	Lamina VII neurons are rhythmically active during locomotor-like activity in the neonatal rat spinal cord. Neuroscience Letters, 1995, 197, 9-12.	2.1	40
83	Long-duration, frequency-dependent motor responses evoked by ventrolateral funiculus stimulation in the neonatal rat spinal cord. Neuroscience Letters, 1995, 192, 97-100.	2.1	20
84	In vivo electrophysiological maturation of neurons derived from a multipotent precursor (embryonal) Tj ETQq0 0	0 rgBT /O	verjock 10 Tf
85	Neurons derived from P19 embryonal carcinoma cells develop responses to excitatory and inhibitory neurotransmitters. Developmental Brain Research, 1995, 90, 141-150.	1.7	21
86	Murine embryonal carcinoma-derived neurons survive and mature following transplantation into adult rat striatum. Neuroscience, 1994, 58, 753-763.	2.3	64
87	Electrophysiological changes accompanying DSP-4 lesions of rat locus coeruleus neurons. Brain Research, 1993, 628, 317-320.	2.2	10
88	Lamina-specific effects of morphine and naloxone in dorsal horn of rat spinal cord in vitro. Journal of Neurophysiology, 1991, 66, 1941-1950.	1.8	86
89	Differential interactions of cholecystokinin and FLFQPQRF-NH2 with μ and δ opioid antinociception in the rat spinal cord. Neuropeptides, 1990, 16, 213-218.	2.2	118
90	Structural requirements for activation of excitatory amino acid receptors in the rat spinal cord in vitro. Experimental Brain Research, 1988, 73, 541-545.	1.5	15

DAVID S K MAGNUSON

#	Article	IF	CITATIONS
91	Synthesis, resolution, and absolute configuration of the isomers of the neuronal excitant 1-amino-1,3-cyclopentanedicarboxylic acid. Journal of Medicinal Chemistry, 1988, 31, 864-867.	6.4	80
92	Excitation of rat hippocampal neurones by the stereoisomers of cis- and trans-1-amino-1,3-cyclopentane dicarboxylate. Canadian Journal of Physiology and Pharmacology, 1987, 65, 2196-2201.	1.4	15
93	The N-methyl-d-aspartate receptor and burst firing of ca1 hippocampal pyramidal neurons. Neuroscience, 1987, 22, 563-571.	2.3	34
94	The action of quinolinate in the rat spinal cord in vitro. Canadian Journal of Physiology and Pharmacology, 1987, 65, 2483-2487.	1.4	8
95	A novel spinal cord slice preparation from the rat. Journal of Neuroscience Methods, 1987, 19, 141-145.	2.5	16
96	Acridinic acid: A new antagonist of amino acid-induced excitations of central neurones. Neuroscience Letters, 1986, 66, 101-105.	2.1	12
97	Ca2+-dependent depolarization and burst firing of rat CA1 pyramidal neurones induced by N-methyl-D-aspartic acid and quinolinic acid: antagonism by 2-amino-5-phosphonovaleric and kynurenic acids. Canadian Journal of Physiology and Pharmacology, 1986, 64, 163-168.	1.4	29
98	Immunohistochemical detection of double-infected cell bodies. Protocol Exchange, 0, , .	0.3	0
99	Immunohistochemical detection of viral-infected terminals. Protocol Exchange, 0, , .	0.3	0