Anne-Odile Hueber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9008055/publications.pdf Version: 2024-02-01

ANNE-ODILE HHERED

#	Article	IF	CITATIONS
1	Downregulation of thioredoxin-1-dependent CD95 S-nitrosation by Sorafenib reduces liver cancer. Redox Biology, 2020, 34, 101528.	9.0	16
2	TRAIL and FasL Functions in Cancer and Autoimmune Diseases: Towards an Increasing Complexity. Cancers, 2019, 11, 639.	3.7	57
3	Flagellin increases death receptor-mediated cell death in a RIP1-dependent manner. Immunology Letters, 2018, 193, 42-50.	2.5	11
4	Cell polarity and adherens junction formation inhibit epithelial Fas cell death receptor signaling. Journal of Cell Biology, 2018, 217, 3839-3852.	5.2	20
5	The tyrosine phosphorylated pro-survival form of Fas intensifies the EGF-induced signal in colorectal cancer cells through the nuclear EGFR/STAT3-mediated pathway. Scientific Reports, 2018, 8, 12424.	3.3	23
6	Detection of S-Acylated CD95 by Acyl-Biotin Exchange. Methods in Molecular Biology, 2017, 1557, 189-198.	0.9	1
7	The Btk-dependent PIP5K1γ lipid kinase activation by Fas counteracts FasL-induced cell death. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 1344-1352.	4.9	4
8	Site-Specific Detection of Tyrosine Phosphorylated CD95 Following Protein Separation by Conventional and Phospho-Protein Affinity SDS-PAGE. Methods in Molecular Biology, 2017, 1557, 173-188.	0.9	2
9	Fas Versatile Signaling and Beyond: Pivotal Role of Tyrosine Phosphorylation in Context-Dependent Signaling and Diseases. Frontiers in Immunology, 2016, 7, 429.	4.8	11
10	An Evolution-Guided Analysis Reveals a Multi-Signaling Regulation of Fas by Tyrosine Phosphorylation and its Implication in Human Cancers. PLoS Biology, 2016, 14, e1002401.	5.6	23
11	Antitumor and cytotoxic properties of a humanized antibody specific for the GM3(Neu5Gc) ganglioside. Immunobiology, 2015, 220, 1343-1350.	1.9	14
12	The Drosophila TNF receptor Grindelwald couples loss of cell polarity and neoplastic growth. Nature, 2015, 522, 482-486.	27.8	145
13	Dominant negative FADD dissipates the proapoptotic signalosome of the unfolded protein response in diabetic embryopathy. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E861-E873.	3.5	17
14	Synergism of PI3K/Akt inhibition and Fas activation on colon cancer cell death. Cancer Letters, 2014, 354, 355-364.	7.2	31
15	Interferon decreases VEGF levels in patients with chronic myeloid leukemia treated with imatinib. Leukemia Research, 2014, 38, 662-665.	0.8	15
16	Vesicles Released by Activated T Cells Induce Both Fas-Mediated RIP-Dependent Apoptotic and Fas-Independent Nonapoptotic Cell Deaths. Journal of Immunology, 2012, 189, 2815-2823.	0.8	11
17	The Fas/CD95 Receptor Regulates the Death of Autoreactive B Cells and the Selection of Antigen-Specific B Cells. Frontiers in Immunology, 2012, 3, 207.	4.8	47
18	Imatinib Sensitizes T-cell Lymphocytes From Chronic Myeloid Leukemia Patients to FasL-induced Cell Death. Journal of Immunotherapy, 2012, 35, 154-158.	2.4	8

Anne-Odile Hueber

#	Article	IF	CITATIONS
19	Treatment of myelodysplastic syndromes with excess of blasts by bevacizumab is well tolerated and is associated with a decrease of VEGF plasma level. Annals of Hematology, 2012, 91, 39-46.	1.8	12
20	Immune modulation by Fas ligand reverse signaling: lymphocyte proliferation is attenuated by the intracellular Fas ligand domain. Blood, 2011, 117, 519-529.	1.4	26
21	A novel role of microtubular cytoskeleton in the dynamics of caspaseâ€dependent Fas/CD95 death receptor complexes during apoptosis. FEBS Letters, 2010, 584, 1033-1040.	2.8	9
22	Identification of a lysine-rich region of Fas as a raft nanodomain targeting signal necessary for Fas-mediated cell death. Experimental Cell Research, 2010, 316, 1513-1522.	2.6	21
23	Palmitoylation of human FasL modulates its cell death-inducing function. Cell Death and Disease, 2010, 1, e88-e88.	6.3	42
24	Palmitoylation of the TRAIL receptor DR4 confers an efficient TRAIL-induced cell death signalling. Biochemical Journal, 2009, 419, 185-194.	3.7	76
25	The extracellular glycosphingolipid-binding motif of Fas defines its internalization route, mode and outcome of signals upon activation by ligand. Cell Death and Differentiation, 2008, 15, 1824-1837.	11.2	57
26	Lipid raft localization and palmitoylation: Identification of two requirements for cell death induction by the tumor suppressors UNC5H. Experimental Cell Research, 2008, 314, 2544-2552.	2.6	19
27	Distinctive molecular signaling in tripleâ€negative breast cancer cell death triggered by hexadecylphosphocholine (miltefosine). FEBS Letters, 2008, 582, 4176-4184.	2.8	13
28	Anti-ganglioside antibody-induced tumor cell death by loss of membrane integrity. Molecular Cancer Therapeutics, 2008, 7, 2033-2041.	4.1	59
29	Myocardial Expression of a Dominant-Negative Form of Daxx Decreases Infarct Size and Attenuates Apoptosis in an In Vivo Mouse Model of Ischemia/Reperfusion Injury. Circulation, 2007, 116, 2709-2717.	1.6	34
30	The CD95 Receptor: Apoptosis Revisited. Cell, 2007, 129, 447-450.	28.9	352
31	The Fas ligand intracellular domain is released by ADAM10 and SPPL2a cleavage in T-cells. Cell Death and Differentiation, 2007, 14, 1678-1687.	11.2	124
32	Palmitoylation is required for efficient Fas cell death signaling. EMBO Journal, 2007, 26, 209-220.	7.8	167
33	Fas ligand is localized to membrane rafts, where it displays increased cell death–inducing activity. Blood, 2006, 107, 2384-2391.	1.4	69
34	The dependence receptor DCC requires lipid raft localization for cell death signaling. Proceedings of the United States of America, 2006, 103, 4128-4133.	7.1	41
35	Expression of a dominant negative form of Daxxin vivo rescues motoneurons from Fas (CD95)-induced cell death. Journal of Neurobiology, 2005, 62, 178-188.	3.6	25
36	DCC association with lipid rafts is required for netrin-1-mediated axon guidance. Journal of Cell Science, 2005, 118, 1687-1692.	2.0	70

Anne-Odile Hueber

#	Article	IF	CITATIONS
37	Transgenic overexpression of a dominant negative mutant of FADD that, although counterselected during tumor progression, cooperates in L-myc-induced tumorigenesis. International Journal of Cancer, 2004, 112, 536-540.	5.1	1
38	alphabeta T-cell development is not affected by inversion of TCRbeta gene enhancer sequences: polar enhancement of gene expression regardless of enhancer orientation. Immunology, 2003, 109, 510-514.	4.4	3
39	Role of membrane microdomain rafts in TNFR-mediated signal transduction. Cell Death and Differentiation, 2003, 10, 7-9.	11.2	46
40	Assessing the Role of the T Cell Receptor β Gene Enhancer in Regulating Coding Joint Formation during V(D)J Recombination. Journal of Biological Chemistry, 2003, 278, 18101-18109.	3.4	24
41	Fas/Tumor Necrosis Factor Receptor Death Signaling Is Required for Axotomy-Induced Death of Motoneurons <i>In Vivo</i> . Journal of Neuroscience, 2003, 23, 8526-8531.	3.6	67
42	Régulation de la mort cellulaire programmée : vers une conception plus dynamique. Medecine/Sciences, 2002, 18, 841-852.	0.2	3
43	An essential role for membrane rafts in the initiation of Fas/CD95â€ŧriggered cell death in mouse thymocytes. EMBO Reports, 2002, 3, 190-196.	4.5	210
44	Expression of Mad1 in T cells leads to reduced thymic cellularity and impaired mitogen-induced proliferation. Oncogene, 2001, 20, 1164-1175.	5.9	18
45	Apoptosis regulators and their role in tumorigenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2001, 1551, F1-F37.	7.4	116
46	Reversible activation of c-Myc in thymocytes enhances positive selection and induces proliferation and apoptosis in vitro. Oncogene, 2000, 19, 1891-1900.	5.9	30
47	CD95: more than just a death factor?. Nature Cell Biology, 2000, 2, E23-E25.	10.3	18
48	A Dominant Negative Fas-associated Death Domain Protein Mutant Inhibits Proliferation and Leads to Impaired Calcium Mobilization in Both T-cells and Fibroblasts. Journal of Biological Chemistry, 2000, 275, 10453-10462.	3.4	69
49	Fas (CD95/APO-1): signaux et fonctions. Annales De L'Institut Pasteur / Actualités, 2000, 11, 37-56.	0.1	0
50	c-Myc and E1A induced cellular sensitivity to activated NK cells involves cytotoxic granules as death effectors. Oncogene, 1999, 18, 2181-2188.	5.9	11
51	c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes and Development, 1999, 13, 1367-1381.	5.9	294
52	The opposing roles of the Akt and c-Myc signalling pathways in survival from CD95-mediated apoptosis. Oncogene, 1998, 17, 2811-2818.	5.9	70
53	Traps to catch unwary oncogenes. Trends in Genetics, 1998, 14, 364-367.	6.7	119
54	p53-dependent impairment of T-cell proliferation in FADD dominant-negative transgenic mice. Current Biology, 1998, 8, 467-470.	3.9	127

#	Article	IF	CITATIONS
55	Requirement for the CD95 Receptor-Ligand Pathway in c-Myc-Induced Apoptosis. Science, 1997, 278, 1305-1309.	12.6	334
56	Gene Structure, cDNA Sequence, and Expression of Murine Bak, a Proapoptotic Bcl-2 Family Member. Genomics, 1997, 44, 195-200.	2.9	23
57	Thymocytes in Thy-1â^'/â^' mice show augmented TCR signaling and impaired differentiation. Current Biology, 1997, 7, 705-708.	3.9	213
58	Thy-1 triggers mouse thymocyte apoptosis through a bcl-2-resistant mechanism Journal of Experimental Medicine, 1994, 179, 785-796.	8.5	73
59	Quantitating Apoptosis by a Nonradioactive DNA Dot Blot Assay. Analytical Biochemistry, 1994, 221, 431-433.	2.4	6