
William J Brackenbury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/900726/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Volatile compounds in human breath: critical review and meta-analysis. Journal of Breath Research, 2022, 16, 024001.	3.0	37
2	Inhibition of the Na+/K+-ATPase by cardiac glycosides suppresses expression of the IDO1 immune checkpoint in cancer cells by reducing STAT1 activation. Journal of Biological Chemistry, 2022, 298, 101707.	3.4	8
3	Widespread association of ERα with RMRP and tRNA genes in MCF-7 cells and breast cancers. Gene, 2022, 821, 146280.	2.2	4
4	Harnessing the Membrane Potential to Combat Cancer Progression. Bioelectricity, 2022, 4, 75-80.	1.1	7
5	Sodium accumulation in breast cancer predicts malignancy and treatment response. British Journal of Cancer, 2022, 127, 337-349.	6.4	13
6	Subcellular dynamics and functional activity of the cleaved intracellular domain of the Na+ channel β1 subunit. Journal of Biological Chemistry, 2022, 298, 102174.	3.4	5
7	Sampling and Analysis of Low-Molecular-Weight Volatile Metabolites in Cellular Headspace and Mouse Breath. Metabolites, 2022, 12, 599.	2.9	3
8	Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers. IScience, 2021, 24, 102270.	4.1	23
9	"Patch Clamp Electrophysiology Methods and Protocols,―Editors Mark Dallas and Damian Bell. Bioelectricity, 2021, 3, 154-155.	1.1	0
10	Voltageâ€dependent activation of Rac1 by Na _v 1.5 channels promotes cell migration. Journal of Cellular Physiology, 2020, 235, 3950-3972.	4.1	50
11	Inhibitory Effect of Eslicarbazepine Acetate and S-Licarbazepine on Nav1.5 Channels. Frontiers in Pharmacology, 2020, 11, 555047.	3.5	10
12	Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 1.	1.6	24
13	Metastatic breast cancer cells induce altered microglial morphology and electrical excitability in vivo. Journal of Neuroinflammation, 2020, 17, 87.	7.2	22
14	Sodium homeostasis in the tumour microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 188304.	7.4	69
15	In Vivo Evidence for Voltage-Gated Sodium Channel Expression in Carcinomas and Potentiation of Metastasis. Cancers, 2019, 11, 1675.	3.7	86
16	Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium, 2019, 80, 125-140.	2.4	29
17	Relationship between lecture capture usage and examination performance of undergraduate bioscience students. Journal of Biological Education, 2019, , 1-11.	1.5	0
18	Inhibition of N1-Src kinase by a specific SH3 peptide ligand reveals a role for N1-Src in neurite elongation by L1-CAM. Scientific Reports, 2017, 7, 43106.	3.3	7

#	Article	IF	CITATIONS
19	High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4591-4596.	7.1	84
20	IK channel activation increases tumor growth and induces differential behavioral responses in two breast epithelial cell lines. Oncotarget, 2017, 8, 42382-42397.	1.8	9
21	Ion Channels in Cancer. , 2016, , 131-163.		6
22	Sodium channel-inhibiting drugs and cancer survival: protocol for a cohort study using the CPRD primary care database. BMJ Open, 2016, 6, e011661.	1.9	13
23	Blockade of voltage-gated sodium channels inhibits invasion of endocrine-resistant breast cancer cells. International Journal of Oncology, 2016, 48, 73-83.	3.3	37
24	Sodium channel-inhibiting drugs and survival of breast, colon and prostate cancer: a population-based study. Scientific Reports, 2015, 5, 16758.	3.3	30
25	Dual roles of voltage-gated sodium channels in development and cancer. International Journal of Developmental Biology, 2015, 59, 357-366.	0.6	51
26	Therapeutic Value of Voltage-Gated Sodium Channel Inhibitors in Breast, Colorectal, and Prostate Cancer: A Systematic Review. Frontiers in Pharmacology, 2015, 6, 273.	3.5	49
27	The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis. Molecular Cancer, 2015, 14, 13.	19.2	127
28	Nav1.5 regulates breast tumor growth and metastatic dissemination <i>in vivo</i> . Oncotarget, 2015, 6, 32914-32929.	1.8	93
29	Abstract P6-03-10: Targeting voltage-gated sodium channels with the antiepileptic drug phenytoin inhibits breast tumor growth and metastasis. , 2015, , .		1
30	Exposure to sodium channel-inhibiting drugs and cancer survival: protocol for a cohort study using the QResearch primary care database: TableÂ1. BMJ Open, 2014, 4, e006604.	1.9	19
31	The sodium channel β1 subunit mediates outgrowth of neuriteâ€like processes on breast cancer cells and promotes tumour growth and metastasis. International Journal of Cancer, 2014, 135, 2338-2351.	5.1	76
32	Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130105.	4.0	123
33	Abstract 1972: The sodium channel auxiliary subunit SCN1B promotes breast tumor growth and metastasis. , 2014, , .		0
34	Membrane potential and cancer progression. Frontiers in Physiology, 2013, 4, 185.	2.8	452
35	Abnormal neuronal patterning occurs during early postnatal brain development of <i>Scn1b</i> -null mice and precedes hyperexcitability. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1089-1094.	7.1	69
36	Voltage-gated sodium channels and metastatic disease. Channels, 2012, 6, 352-361.	2.8	161

WILLIAM J BRACKENBURY

#	Article	IF	CITATIONS
37	Therapeutic potential for phenytoin: targeting Nav1.5 sodium channels to reduce migration and invasion in metastatic breast cancer. Breast Cancer Research and Treatment, 2012, 134, 603-615.	2.5	168
38	Na+ Channel ? Subunits: Overachievers of the Ion Channel Family. Frontiers in Pharmacology, 2011, 2, 53.	3.5	270
39	Na+ Channel Scn1b Gene Regulates Dorsal Root Ganglion Nociceptor Excitability in Vivo. Journal of Biological Chemistry, 2011, 286, 22913-22923.	3.4	39
40	Voltage-Gated Na ⁺ Channel β1B: A Secreted Cell Adhesion Molecule Involved in Human Epilepsy. Journal of Neuroscience, 2011, 31, 14577-14591.	3.6	97
41	Functional reciprocity between Na ⁺ channel Na _v 1.6 and β1 subunits in the coordinated regulation of excitability and neurite outgrowth. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2283-2288.	7.1	121
42	A novel adhesion molecule in human breast cancer cells: Voltage-gated Na+ channel β1 subunit. International Journal of Biochemistry and Cell Biology, 2009, 41, 1216-1227.	2.8	105
43	Epidermal growth factor upregulates motility of Matâ€LyLu rat prostate cancer cells partially via voltageâ€gated Na ⁺ channel activity. Journal of Cellular Physiology, 2008, 215, 77-81.	4.1	50
44	An Emerging Role for Voltage-Gated Na+ Channels in Cellular Migration: Regulation of Central Nervous System Development and Potentiation of Invasive Cancers. Neuroscientist, 2008, 14, 571-583.	3.5	103
45	Voltage-Gated Na ⁺ Channel β1 Subunit-Mediated Neurite Outgrowth Requires Fyn Kinase and Contributes to Postnatal CNS Development <i>In Vivo</i> . Journal of Neuroscience, 2008, 28, 3246-3256.	3.6	95
46	Voltage-gated Na ⁺ channels: Potential for β subunits as therapeutic targets. Expert Opinion on Therapeutic Targets, 2008, 12, 1191-1203.	3.4	86
47	Nerve growth factor enhances voltage-gated Na+ channel activity and Transwell migration in Mat-LyLu rat prostate cancer cell line. Journal of Cellular Physiology, 2007, 210, 602-608.	4.1	51
48	The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells. Breast Cancer Research and Treatment, 2007, 101, 149-160.	2.5	157
49	Activity-dependent regulation of voltage-gated Na+channel expression in Mat-LyLu rat prostate cancer cell line. Journal of Physiology, 2006, 573, 343-356.	2.9	101
50	Expression of Na+-dependent citrate transport in a strongly metastatic human prostate cancer PC-3M cell line: regulation by voltage-gated Na+channel activity. Journal of Physiology, 2005, 563, 393-408.	2.9	32
51	Voltage-Gated Sodium Channel Expression and Potentiation of Human Breast Cancer Metastasis. Clinical Cancer Research, 2005, 11, 5381-5389.	7.0	410
52	Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO Journal, 2003, 22, 2004-2014.	7.8	512