
David M J Lilley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/900698/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and mechanism of a methyltransferase ribozyme. Nature Chemical Biology, 2022, 18, 556-564.	8.0	17
2	Structure and folding of four putative kink turns identified in structured RNA species in a test of structural prediction rules. Nucleic Acids Research, 2021, 49, 5916-5924.	14.5	4
3	The potential versatility of <scp>RNA</scp> catalysis. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1651.	6.4	20
4	Human ANKLE1 Is a Nuclease Specific for Branched DNA. Journal of Molecular Biology, 2020, 432, 5825-5834.	4.2	12
5	Crystal structure and ligand-induced folding of the SAM/SAH riboswitch. Nucleic Acids Research, 2020, 48, 7545-7556.	14.5	6
6	RNA-Puzzles Round IV: 3D structure predictions of four ribozymes and two aptamers. Rna, 2020, 26, 982-995.	3.5	100
7	Functional organization of box C/D RNA-guided RNA methyltransferase. Nucleic Acids Research, 2020, 48, 5094-5105.	14.5	17
8	Structure and ligand binding of the ADP-binding domain of the NAD ⁺ riboswitch. Rna, 2020, 26, 878-887.	3.5	24
9	Effect of methylation of adenine N ⁶ on kink turn structure depends on location. RNA Biology, 2019, 16, 1377-1385.	3.1	9
10	Junction resolving enzymes use multivalency to keep the Holliday junction dynamic. Nature Chemical Biology, 2019, 15, 269-275.	8.0	23
11	Structure-guided design of a high-affinity ligand for a riboswitch. Rna, 2019, 25, 423-430.	3.5	10
12	Structure and ligand binding of the glutamine-Il riboswitch. Nucleic Acids Research, 2019, 47, 7666-7675.	14.5	17
13	Comparison of the Structures and Mechanisms of the Pistol and Hammerhead Ribozymes. Journal of the American Chemical Society, 2019, 141, 7865-7875.	13.7	41
14	The role of RNA structure in translational regulation by L7Ae protein in archaea. Rna, 2019, 25, 60-69.	3.5	7
15	Classification of the nucleolytic ribozymes based upon catalytic mechanism. F1000Research, 2019, 8, 1462.	1.6	31
16	The Interaction Between L7Ae Family of Proteins and RNA Kink Turns. Biological and Medical Physics Series, 2019, , 23-37.	0.4	0
17	The kink-turn in the structural biology of RNA. Quarterly Reviews of Biophysics, 2018, 51, e5.	5.7	22
18	A monovalent ion in the DNA binding interface of the eukaryotic junction-resolving enzyme GEN1. Nucleic Acids Research, 2018, 46, 11089-11098.	14.5	5

#	Article	IF	CITATIONS
19	Structure and ligand binding of the SAM-V riboswitch. Nucleic Acids Research, 2018, 46, 6869-6879.	14.5	37
20	Biochemical and Structural Properties of Fungal Holliday Junction-Resolving Enzymes. Methods in Enzymology, 2018, 600, 543-568.	1.0	1
21	MECHANISTIC ORIGINS OF RNA CATALYSIS. , 2018, , .		0
22	The Guanidine Riboswitch—A Poor Orphan No Longer. Cell Chemical Biology, 2017, 24, 130-131.	5.2	3
23	The structure of a nucleolytic ribozyme that employs a catalytic metal ion. Nature Chemical Biology, 2017, 13, 508-513.	8.0	52
24	Control of box C/D snoRNP assembly by N ⁶ â€methylation of adenine. EMBO Reports, 2017, 18, 1631-1645.	4.5	51
25	How RNA acts as a nuclease: some mechanistic comparisons in the nucleolytic ribozymes. Biochemical Society Transactions, 2017, 45, 683-691.	3.4	28
26	The Structure of the Guanidine-II Riboswitch. Cell Chemical Biology, 2017, 24, 695-702.e2.	5.2	55
27	Holliday junctionâ€resolving enzymes—structures and mechanisms. FEBS Letters, 2017, 591, 1073-1082.	2.8	21
28	Sequence determinants of the folding properties of box C/D kink-turns in RNA. Rna, 2017, 23, 1927-1935.	3.5	8
29	Structure of the Guanidine III Riboswitch. Cell Chemical Biology, 2017, 24, 1407-1415.e2.	5.2	47
30	Crystal Structures of Cyanine Fluorophores Stacked onto the End of Double-Stranded RNA. Biophysical Journal, 2017, 113, 2336-2343.	0.5	8
31	Ribozymes and the mechanisms that underlie RNA catalysis. Frontiers of Chemical Science and Engineering, 2016, 10, 178-185.	4.4	40
32	The Novel Chemical Mechanism of the Twister Ribozyme. Journal of the American Chemical Society, 2016, 138, 6151-6162.	13.7	63
33	A quasi-cyclic RNA nano-scale molecular object constructed using kink turns. Nanoscale, 2016, 8, 15189-15195.	5.6	14
34	Analysis of the Intrinsically Disordered N-Terminus of the DNA Junction-Resolving Enzyme T7 Endonuclease I: Identification of Structure Formed upon DNA Binding. Biochemistry, 2016, 55, 4166-4172.	2.5	3
35	A critical base pair in k-turns determines the conformational class adopted, and correlates with biological function. Nucleic Acids Research, 2016, 44, 5390-5398.	14.5	20
36	Editorial overview: Nucleic acids and their protein complexes. Current Opinion in Structural Biology, 2016, 36, vii-viii.	5.7	1

#	Article	IF	CITATIONS
37	The solution structural ensembles of RNA kink-turn motifs and their protein complexes. Nature Chemical Biology, 2016, 12, 146-152.	8.0	37
38	The Kink Turn, a Key Architectural Element in RNA Structure. Journal of Molecular Biology, 2016, 428, 790-801.	4.2	43
39	RNA catalysis—is that it?. Rna, 2015, 21, 534-537.	3.5	21
40	Crystal Structure of a Eukaryotic GEN1 Resolving Enzyme Bound to DNA. Cell Reports, 2015, 13, 2565-2575.	6.4	37
41	Crystal structure of the Varkud satellite ribozyme. Nature Chemical Biology, 2015, 11, 840-846.	8.0	96
42	The k-junction motif in RNA structure. Nucleic Acids Research, 2014, 42, 5322-5331.	14.5	21
43	GEN1 from a Thermophilic Fungus Is Functionally Closely Similar to Non-Eukaryotic Junction-Resolving Enzymes. Journal of Molecular Biology, 2014, 426, 3946-3959.	4.2	18
44	A critical base pair in k-turns that confers folding characteristics and correlates with biological function. Nature Communications, 2014, 5, 5127.	12.8	33
45	Structure of a rare non-standard sequence k-turn bound by L7Ae protein. Nucleic Acids Research, 2014, 42, 4734-4740.	14.5	15
46	The K-turn motif in riboswitches and other RNA species. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 995-1004.	1.9	30
47	Crystal structure and mechanistic investigation of the twister ribozyme. Nature Chemical Biology, 2014, 10, 739-744.	8.0	121
48	FAN1 Activity on Asymmetric Repair Intermediates Is Mediated by an Atypical Monomeric Virus-type Replication-Repair Nuclease Domain. Cell Reports, 2014, 8, 84-93.	6.4	23
49	Cooperative Control of Holliday Junction Resolution and DNA Repair by the SLX1 and MUS81-EME1 Nucleases. Molecular Cell, 2013, 52, 221-233.	9.7	132
50	Measurement of the Change in Twist at a Helical Junction in RNA Using theÂOrientation Dependence of FRET. Biophysical Journal, 2013, 105, 2175-2181.	0.5	16
51	The Importance of the N-Terminus of T7 Endonuclease I in the Interaction with DNA Junctions. Journal of Molecular Biology, 2013, 425, 395-410.	4.2	13
52	The plasticity of a structural motif in RNA: Structural polymorphism of a kink turn as a function of its environment. Rna, 2013, 19, 357-364.	3.5	35
53	The molecular recognition of kink-turn structure by the L7Ae class of proteins. Rna, 2013, 19, 1703-1710.	3.5	52
54	A Mechanistic Comparison of the Varkud Satellite and Hairpin Ribozymes. Progress in Molecular Biology and Translational Science, 2013, 120, 93-121.	1.7	5

#	Article	IF	CITATIONS
55	The functional exchangeability of pk- and k-turns in RNA structure. RNA Biology, 2013, 10, 445-452.	3.1	9
56	Structure and folding of a rare, natural kink turn in RNA with an A•A pair at the 2b•2n position. Rna, 2012, 18, 1257-1266.	3.5	20
57	Single-Molecule Observation of the Induction of k-Turn RNA Structure on Binding L7Ae Protein. Biophysical Journal, 2012, 103, 2541-2548.	0.5	26
58	The structure and folding of kink turns in RNA. Wiley Interdisciplinary Reviews RNA, 2012, 3, 797-805.	6.4	33
59	General Acid–Base Catalysis Mediated by Nucleobases in the Hairpin Ribozyme. Journal of the American Chemical Society, 2012, 134, 16717-16724.	13.7	72
60	The Structure of Sulfoindocarbocyanine 3 Terminally Attached to dsDNA via a Long, Flexible Tether. Biophysical Journal, 2012, 102, 561-568.	0.5	21
61	The Structure and Folding of Helical Junctions in RNA. RSC Biomolecular Sciences, 2012, , 156-176.	0.4	Ο
62	Analysis of Conformational Changes in the DNA Junction-Resolving Enzyme T7 Endonuclease I on Binding a Four-Way Junction Using EPR. Biochemistry, 2011, 50, 9963-9972.	2.5	5
63	Orientation of Cyanine Fluorophores Terminally Attached to DNA via Long, Flexible Tethers. Biophysical Journal, 2011, 101, 1148-1154.	0.5	45
64	Mechanisms of RNA catalysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2910-2917.	4.0	55
65	Synthesis of Imidazole C1- and C3-Ribonucleoside Phosphoramidites for Probing Catalytic Mechanism in Ribozyme. Heterocycles, 2011, 83, 2041.	0.7	6
66	RNA Tertiary Interactions in a Riboswitch Stabilize the Structure of a Kink Turn. Structure, 2011, 19, 1233-1240.	3.3	60
67	The chemical origins of life and its early evolution: an introduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2853-2856.	4.0	15
68	Do the hairpin and VS ribozymes share a common catalytic mechanism based on general acid–base catalysis? A critical assessment of available experimental data. Rna, 2011, 17, 213-221.	3.5	55
69	Catalysis by the nucleolytic ribozymes. Biochemical Society Transactions, 2011, 39, 641-646.	3.4	37
70	Structure of the three-way helical junction of the hepatitis C virus IRES element. Rna, 2010, 16, 1597-1609.	3.5	25
71	The Caenorhabditis elegans Homolog of Gen1/Yen1 Resolvases Links DNA Damage Signaling to DNA Double-Strand Break Repair. PLoS Genetics, 2010, 6, e1001025.	3.5	86
72	Nucleobase-mediated general acid-base catalysis in the Varkud satellite ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11751-11756.	7.1	69

#	Article	IF	CITATIONS
73	A structural database for k-turn motifs in RNA. Rna, 2010, 16, 1463-1468.	3.5	80
74	The interaction of four-way DNA junctions with resolving enzymes. Biochemical Society Transactions, 2010, 38, 399-403.	3.4	11
75	Formation of an active site in <i>trans</i> by interaction of two complete Varkud Satellite ribozymes. Rna, 2009, 15, 1822-1826.	3.5	16
76	The Evolution of Ribozyme Chemistry. Science, 2009, 323, 1436-1438.	12.6	38
77	Ion-induced folding of a kink turn that departs from the conventional sequence. Nucleic Acids Research, 2009, 37, 7281-7289.	14.5	27
78	TRF2 promotes, remodels and protects telomeric Holliday junctions. EMBO Journal, 2009, 28, 641-651.	7.8	99
79	Synthesis of Novel C4-Linked C ₂ -Imidazole Ribonucleoside Phosphoramidite and Its Application to Probing the Catalytic Mechanism of a Ribozyme. Journal of Organic Chemistry, 2009, 74, 2350-2356.	3.2	27
80	Comparative Gel Electrophoresis Analysis of Helical Junctions in RNA. Methods in Enzymology, 2009, 469, 143-157.	1.0	6
81	Coordination of Structure-Specific Nucleases by Human SLX4/BTBD12 Is Required for DNA Repair. Molecular Cell, 2009, 35, 116-127.	9.7	300
82	DNA revisited. Nature Chemical Biology, 2008, 4, 725-726.	8.0	0
83	The Complete VS Ribozyme in Solution Studied by Small-Angle X-Ray Scattering. Structure, 2008, 16, 1357-1367.	3.3	78
84	The Importance of G·A Hydrogen Bonding in the Metal Ion- and Protein-induced Folding of a Kink Turn RNA. Journal of Molecular Biology, 2008, 381, 431-442.	4.2	39
85	Orientation dependence in fluorescent energy transfer between Cy3 and Cy5 terminally attached to double-stranded nucleic acids. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11176-11181.	7.1	301
86	Analysis of branched nucleic acid structure using comparative gel electrophoresis. Quarterly Reviews of Biophysics, 2008, 41, 1-39.	5.7	33
87	Fluorescence-Force Spectroscopy Maps Two-Dimensional Reaction Landscape of the Holliday Junction. Science, 2007, 318, 279-283.	12.6	270
88	RNA folding and the origins of catalytic activity in the hairpin ribozyme. Blood Cells, Molecules, and Diseases, 2007, 38, 8-14.	1.4	23
89	A chemo-genetic approach for the study of nucleobase participation in nucleolytic ribozymes. Biological Chemistry, 2007, 388, 699-704.	2.5	9
90	A guanine nucleobase important for catalysis by the VS ribozyme. EMBO Journal, 2007, 26, 2489-2500.	7.8	86

#	Article	IF	CITATIONS
91	The structural basis of Holliday junction resolution by T7 endonuclease I. Nature, 2007, 449, 621-624.	27.8	80
92	Mechanistic Aspects of the DNA Junction-Resolving Enzyme T7 Endonuclease Iâ€. Biochemistry, 2006, 45, 3934-3942.	2.5	14
93	Structural Recognition between a Four-way DNA Junction and a Resolving Enzyme. Journal of Molecular Biology, 2006, 359, 1261-1276.	4.2	20
94	Folding of the Adenine Riboswitch. Chemistry and Biology, 2006, 13, 857-868.	6.0	255
95	The role of specific 2'-hydroxyl groups in the stabilization of the folded conformation of kink-turn RNA. Rna, 2006, 13, 200-210.	3.5	62
96	Nucleobase catalysis in the hairpin ribozyme. Rna, 2006, 12, 980-987.	3.5	61
97	Stereospecific Effects Determine the Structure of a Four-Way DNA Junction. Chemistry and Biology, 2005, 12, 217-228.	6.0	18
98	Structure, folding and mechanisms of ribozymes. Current Opinion in Structural Biology, 2005, 15, 313-323.	5.7	143
99	Observing spontaneous branch migration of Holliday junctions one step at a time. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5715-5720.	7.1	89
100	Induced fit of RNA on binding the L7Ae protein to the kink-turn motif. Rna, 2005, 11, 1192-1200.	3.5	97
101	Nucleobase Participation in Ribozyme Catalysis. Journal of the American Chemical Society, 2005, 127, 5026-5027.	13.7	57
102	Structural and Dynamic Properties of Four-Way Helical Junctions in DNA Molecules. ACS Symposium Series, 2004, , 145-164.	0.5	0
103	Analysis of Global Conformational Transitions in Ribozymes. , 2004, 252, 077-108.		19
104	Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements. Rna, 2004, 10, 880-888.	3.5	138
105	The kink-turn motif in RNA is dimorphic, and metal ion-dependent. Rna, 2004, 10, 254-264.	3.5	140
106	The Varkud satellite ribozyme. Rna, 2004, 10, 151-158.	3.5	74
107	Observation of internal cleavage and ligation reactions of a ribozyme. Nature Structural and Molecular Biology, 2004, 11, 1107-1113.	8.2	104
108	The Chirality of a Four-Way Helical Junction in RNA. Journal of the American Chemical Society, 2004, 126, 4126-4127.	13.7	12

#	Article	IF	CITATIONS
109	Efficient, pH-Dependent RNA Ligation by the VS Ribozyme in Trans. Biochemistry, 2004, 43, 1118-1125.	2.5	30
110	Vesicle Encapsulation Studies Reveal that Single Molecule Ribozyme Heterogeneities Are Intrinsic. Biophysical Journal, 2004, 87, 2798-2806.	0.5	189
111	Conformational Flexibility of Four-way Junctions in RNA. Journal of Molecular Biology, 2004, 336, 69-79.	4.2	86
112	Exploring Rare Conformational Species and Ionic Effects in DNA Holliday Junctions Using Single-molecule Spectroscopy. Journal of Molecular Biology, 2004, 341, 739-751.	4.2	111
113	Electrostatic Interactions and the Folding of the Four-way DNA Junction: Analysis by Selective Methyl Phosphonate Substitution. Journal of Molecular Biology, 2004, 343, 851-864.	4.2	17
114	The complex between a four-way DNA junction and T7 endonuclease I. EMBO Journal, 2003, 22, 1398-1409.	7.8	41
115	The origins of RNA catalysis in ribozymes. Trends in Biochemical Sciences, 2003, 28, 495-501.	7.5	99
116	Ribozymes—a snip too far?. Nature Structural and Molecular Biology, 2003, 10, 672-673.	8.2	22
117	Structural dynamics of individual Holliday junctions. Nature Structural Biology, 2003, 10, 93-97.	9.7	311
118	Metal Ion Binding in the Active Site of the Junction-resolving Enzyme T7 Endonuclease I in the Presence and in the Absence of DNA. Journal of Molecular Biology, 2003, 333, 59-73.	4.2	9
119	The dynamic nature of the four-way junction of the hepatitis C virus IRES. Rna, 2003, 9, 809-820.	3.5	31
120	A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proceedings of the United States of America, 2003, 100, 9308-9313.	7.1	207
121	Functional Group Requirements in the Probable Active Site of the VS Ribozyme. Journal of Molecular Biology, 2002, 323, 23-34.	4.2	64
122	Folding and catalysis by the VS ribozyme. Biochimie, 2002, 84, 889-896.	2.6	10
123	Metal ion binding and the folding of the hairpin ribozyme. Rna, 2002, 8, 587-600.	3.5	49
124	The global structure of the VS ribozyme. EMBO Journal, 2002, 21, 2461-2471.	7.8	89
125	Metal ions bound at the active site of the junction-resolving enzyme T7 endonuclease I. EMBO Journal, 2002, 21, 3505-3515.	7.8	55
126	Importance of Specific Nucleotides in the Folding of the Natural Form of the Hairpin Ribozyme. Biochemistry, 2001, 40, 2291-2302.	2.5	80

#	Article	IF	CITATIONS
127	Thermodynamics of Ion-Induced RNA Folding in the Hammerhead Ribozyme: An Isothermal Titration Calorimetric Studyâ€. Biochemistry, 2001, 40, 1423-1429.	2.5	41
128	Who will fill the gap by making nucleic synthesizers now?. Nature, 2001, 411, 15-15.	27.8	1
129	The junction-resolving enzymes. Nature Reviews Molecular Cell Biology, 2001, 2, 433-443.	37.0	59
130	Structures of helical junctions in nucleic acids. Quarterly Reviews of Biophysics, 2000, 33, 109-159.	5.7	321
131	Location of Cyanine-3 on Double-Stranded DNA:Â Importance for Fluorescence Resonance Energy Transfer Studiesâ€. Biochemistry, 2000, 39, 6317-6324.	2.5	226
132	Ensuring Productive Resolution by the Junction-Resolving Enzyme RuvC: Large Enhancement of the Second-Strand Cleavage Rate. Biochemistry, 2000, 39, 16125-16134.	2.5	57
133	Yeast Resolving Enzyme CCE1 Makes Sequential Cleavages in DNA Junctions within the Lifetime of the Complex. Biochemistry, 2000, 39, 4082-4089.	2.5	48
134	Catalytic and binding mutants of the junction-resolving enzyme endonuclease I of bacteriophage T7: role of acidic residues. Nucleic Acids Research, 1999, 27, 682-689.	14.5	22
135	Sequence and Functional-Group Specificity for Cleavage of DNA Junctions by RuvC ofEscherichia coli. Biochemistry, 1999, 38, 11349-11358.	2.5	36
136	RNA Folding and Misfolding of the Hammerhead Ribozyme. Biochemistry, 1999, 38, 3345-3354.	2.5	63
137	Folding of branched RNA species. , 1998, 48, 101-112.		34
138	Dissection of the Sequence Specificity of the Holliday Junction Endonuclease CCE1â€. Biochemistry, 1998, 37, 7733-7740.	2.5	50
139	Folding of the Four-Way RNA Junction of the Hairpin Ribozyme. Biochemistry, 1998, 37, 17629-17636.	2.5	81
140	Structure and Activity of the Hairpin Ribozyme in Its Natural Junction Conformation: Effect of Metal Ionsâ€. Biochemistry, 1998, 37, 14195-14203.	2.5	86
141	Exchange between Stacking Conformers in a Four-Way DNA Junctionâ€. Biochemistry, 1998, 37, 23-32.	2.5	80
142	105 The dimeric nature of the junction-resolving enzyme T7 endonuclease I. Biochemical Society Transactions, 1997, 25, S640-S640.	3.4	1
143	106 Severe helical distortion of the U1A mRNA 3′ untranslated region induced by the U1A protein binding site. Biochemical Society Transactions, 1997, 25, S641-S641.	3.4	Ο
144	110 T4 Endonuclease VII — a zinc containing four-way DNA junction resolving enzyme. Biochemical Society Transactions, 1997, 25, S644-S644.	3.4	0

#	Article	IF	CITATIONS
145	112 Sequence specificity of CCE1. Biochemical Society Transactions, 1997, 25, S646-S646.	3.4	2
146	Global Structure of Three-Way DNA Junctions with and without Additional Unpaired Bases:  A Fluorescence Resonance Energy Transfer Analysis. Biochemistry, 1997, 36, 13530-13538.	2.5	80
147	DNA supercoiling and transcription: topological coupling of promoters. Quarterly Reviews of Biophysics, 1996, 29, 203-225.	5.7	22
148	Applying a genetic cantilever. Nature, 1995, 375, 532-532.	27.8	8
149	A Nomenclature of Junctions and Branchpoints in Nucleic Acids. Recommendations 1994. FEBS Journal, 1995, 230, 1-2.	0.2	42
150	Molecular recognition of DNA structure by proteins that mediate genetic recombination. Journal of Molecular Recognition, 1994, 7, 71-78.	2.1	2
151	The structure of branched DNA species. Quarterly Reviews of Biophysics, 1993, 26, 131-175.	5.7	81
152	Fluorescence resonance energy transfer analysis of the structure of the four-way DNA junction. Biochemistry, 1992, 31, 4846-4856.	2.5	270
153	HMG has DNA wrapped up. Nature, 1992, 357, 282-283.	27.8	189
154	NMR study of parallel-stranded tetraplex formation by the hexadeoxynucleotide d(TG4T). Nature, 1992, 360, 280-282.	27.8	188
155	The structure of DNA junctions and their interaction with enzymes. FEBS Journal, 1992, 207, 285-295.	0.2	26
156	When the CAP fits bent DNA. Nature, 1991, 354, 359-360.	27.8	14
157	RNA bulges and the helical periodicity of double-stranded RNA. Nature, 1990, 343, 484-487.	27.8	180
158	What's new? Scanning tunneling microscopy of DNA. BioEssays, 1990, 12, 131-132.	2.5	0
159	Long-range structural effects in supercolied DNA: Statistical thermodynamics reveals a correlation between calculated cooperative melting and contextual influence on cruciform extrusion. Biopolymers, 1989, 28, 1449-1473.	2.4	14
160	Fluorescence energy transfer shows that the four-way DNA junction is a right-handed cross of antiparallel molecules. Nature, 1989, 341, 763-766.	27.8	372
161	DNA supercoiling and DNA structure. Biochemical Society Transactions, 1986, 14, 211-213.	3.4	9
162	DNA supercoiling. Biochemical Society Transactions, 1986, 14, 489-493.	3.4	9

#	Article	IF	CITATIONS
163	DNA structure: Bent molecules—how and why?. Nature, 1986, 320, 487-488.	27.8	40
164	DNA bending induced by cruciform formation. Nature, 1985, 313, 154-156.	27.8	156
165	DNA: Sequence, Structure and Supercoiling. Biochemical Society Transactions, 1984, 12, 127-140.	3.4	25
166	Molecular biology: Eukaryotic genes—are they under torsional stress?. Nature, 1983, 305, 276-277.	27.8	52