
Haimei Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9006714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science, 2003, 299, 1719-1722.	12.6	5,548
2	Multiferroic BaTiO3-CoFe2O4 Nanostructures. Science, 2004, 303, 661-663.	12.6	2,051
3	Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells. Journal of the American Chemical Society, 2011, 133, 18522-18525.	13.7	1,415
4	Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories. Science, 2009, 324, 1309-1312.	12.6	1,200
5	Real-Time Imaging of Pt ₃ Fe Nanorod Growth in Solution. Science, 2012, 336, 1011-1014.	12.6	649
6	Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams. Nature Nanotechnology, 2009, 4, 732-737.	31.5	562
7	Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nature Communications, 2015, 6, 6567.	12.8	440
8	Photovoltaic Devices Employing Ternary PbS _{<i>x</i>} Se _{1<i>-x</i>} Nanocrystals. Nano Letters, 2009, 9, 1699-1703.	9.1	433
9	Facet development during platinum nanocube growth. Science, 2014, 345, 916-919.	12.6	429
10	Electric Field-Induced Magnetization Switching in Epitaxial Columnar Nanostructures. Nano Letters, 2005, 5, 1793-1796.	9.1	426
11	Selective Facet Reactivity during Cation Exchange in Cadmium Sulfide Nanorods. Journal of the American Chemical Society, 2009, 131, 5285-5293.	13.7	372
12	Co-occurrence of Superparamagnetism and Anomalous Hall Effect in Highly Reduced Cobalt-Doped RutileTiO2â^îfFilms. Physical Review Letters, 2004, 92, 166601.	7.8	352
13	Synthesis of PbS Nanorods and Other Ionic Nanocrystals of Complex Morphology by Sequential Cation Exchange Reactions. Journal of the American Chemical Society, 2009, 131, 16851-16857.	13.7	329
14	Self-Assembled Growth of BiFeO3–CoFe2O4 Nanostructures. Advanced Materials, 2006, 18, 2747-2752.	21.0	317
15	Visualization of Electrode–Electrolyte Interfaces in LiPF ₆ /EC/DEC Electrolyte for Lithium Ion Batteries via in Situ TEM. Nano Letters, 2014, 14, 1745-1750.	9.1	304
16	Nanocrystal Diffusion in a Liquid Thin Film Observed by in Situ Transmission Electron Microscopy. Nano Letters, 2009, 9, 2460-2465.	9.1	282
17	Electrically Assisted Magnetic Recording in Multiferroic Nanostructures. Nano Letters, 2007, 7, 1586-1590.	9.1	268
18	Controlling Self-Assembled Perovskiteâ^'Spinel Nanostructures. Nano Letters, 2006, 6, 1401-1407.	9.1	256

#	Article	IF	CITATIONS
19	Epitaxial BiFeO3 thin films on Si. Applied Physics Letters, 2004, 85, 2574-2576.	3.3	249
20	Hetero-Epitaxial Anion Exchange Yields Single-Crystalline Hollow Nanoparticles. Journal of the American Chemical Society, 2009, 131, 13943-13945.	13.7	221
21	Observation of Transient Structural-Transformation Dynamics in a Cu ₂ S Nanorod. Science, 2011, 333, 206-209.	12.6	220
22	Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy and Environmental Science, 2016, 9, 2563-2570.	30.8	216
23	Surfaceâ€Confined Fabrication of Ultrathin Nickel Cobaltâ€Layered Double Hydroxide Nanosheets for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2018, 28, 1803272.	14.9	215
24	Ferroelectric size effects in multiferroic BiFeO3 thin films. Applied Physics Letters, 2007, 90, 252906.	3.3	180
25	A spongy nickel-organic CO ₂ reduction photocatalyst for nearly 100% selective CO production. Science Advances, 2017, 3, e1700921.	10.3	175
26	In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles. Nature Communications, 2018, 9, 421.	12.8	171
27	Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. Nature Materials, 2019, 18, 970-976.	27.5	169
28	Self-assembled single-crystal ferromagnetic iron nanowires formed by decomposition. Nature Materials, 2004, 3, 533-538.	27.5	165
29	Revealing the Atomic Restructuring of Pt–Co Nanoparticles. Nano Letters, 2014, 14, 3203-3207.	9.1	162
30	Revealing Bismuth Oxide Hollow Nanoparticle Formation by the Kirkendall Effect. Nano Letters, 2013, 13, 5715-5719.	9.1	157
31	Direct Observation of Nanoparticle Superlattice Formation by Using Liquid Cell Transmission Electron Microscopy. ACS Nano, 2012, 6, 2078-2085.	14.6	152
32	Determination of the Quantum Dot Band Gap Dependence on Particle Size from Optical Absorbance and Transmission Electron Microscopy Measurements. ACS Nano, 2012, 6, 9021-9032.	14.6	138
33	In Situ Study of Lithiation and Delithiation of MoS ₂ Nanosheets Using Electrochemical Liquid Cell Transmission Electron Microscopy. Nano Letters, 2015, 15, 5214-5220.	9.1	135
34	Three-dimensional heteroepitaxy in self-assembled BaTiO3–CoFe2O4 nanostructures. Applied Physics Letters, 2004, 85, 2035-2037.	3.3	132
35	Towards data-driven next-generation transmission electron microscopy. Nature Materials, 2021, 20, 274-279.	27.5	130
36	Observation of growth of metal nanoparticles. Chemical Communications, 2013, 49, 11720.	4.1	128

#	Article	IF	CITATIONS
37	Preparation of Singleâ€Layer MoS ₂ <i>_x</i> Se _{2(1â€} <i>_x</i> _x Mo <i>_x</i> S _x Mo <i>_x</i> Mo <i>_x</i> S _x Mo <i>_x</i>	10.0	126
38	Dynamic Covalent Synthesis of Crystalline Porous Graphitic Frameworks. CheM, 2020, 6, 933-944.	11.7	123
39	Structure and interface chemistry of perovskite-spinel nanocomposite thin films. Applied Physics Letters, 2006, 89, 172902.	3.3	122
40	Liquid Cell Transmission Electron Microscopy. Annual Review of Physical Chemistry, 2016, 67, 719-747.	10.8	120
41	Liquid Cell Transmission Electron Microscopy Study of Platinum Iron Nanocrystal Growth and Shape Evolution. Journal of the American Chemical Society, 2013, 135, 5038-5043.	13.7	117
42	In Situ Observation of Oscillatory Growth of Bismuth Nanoparticles. Nano Letters, 2012, 12, 1470-1474.	9.1	114
43	Sulfidation of Cadmium at the Nanoscale. ACS Nano, 2008, 2, 1452-1458.	14.6	113
44	Size effects in ultrathin epitaxial ferroelectric heterostructures. Applied Physics Letters, 2004, 84, 5225-5227.	3.3	112
45	Evidence for power-law frequency dependence of intrinsic dielectric response in theCaCu3Ti4O12. Physical Review B, 2004, 70, .	3.2	110
46	Assembled Monolayer Nanorod Heterojunctions. ACS Nano, 2011, 5, 3811-3816.	14.6	109
47	Frontiers of <i>in situ</i> electron microscopy. MRS Bulletin, 2015, 40, 12-18.	3.5	109
48	Imaging Protein Structure in Water at 2.7Ânm Resolution by Transmission Electron Microscopy. Biophysical Journal, 2012, 102, L15-L17.	0.5	105
49	CO2 Hydrogenation Studies on Co and CoPt Bimetallic Nanoparticles Under Reaction Conditions Using TEM, XPS and NEXAFS. Topics in Catalysis, 2011, 54, 778-785.	2.8	103
50	An investigation of ultrathin nickel-iron layered double hydroxide nanosheets grown on nickel foam for high-performance supercapacitor electrodes. Journal of Alloys and Compounds, 2017, 714, 63-70.	5.5	101
51	Electric Field Effect in Diluted Magnetic Insulator AnataseCo:  TiO2. Physical Review Letters, 2005, 94, 126601.	7.8	100
52	Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7187-7190.	7.1	97
53	Heterophase fcc-2H-fcc gold nanorods. Nature Communications, 2020, 11, 3293.	12.8	92
54	One-pot synthesis of carbon coated-SnO2/graphene-sheet nanocomposite with highly reversible lithium storage capability. Journal of Power Sources, 2013, 232, 152-158.	7.8	91

#	Article	IF	CITATIONS
55	Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors. Chemical Engineering Journal, 2019, 367, 115-122.	12.7	90
56	Heteroepitaxially enhanced magnetic anisotropy in BaTiO3–CoFe2O4 nanostructures. Applied Physics Letters, 2007, 90, 113113.	3.3	88
57	Size-Dependent Polar Ordering in Colloidal GeTe Nanocrystals. Nano Letters, 2011, 11, 1147-1152.	9.1	84
58	Revealing Correlation of Valence State with Nanoporous Structure in Cobalt Catalyst Nanoparticles by <i>In Situ</i> Environmental TEM. ACS Nano, 2012, 6, 4241-4247.	14.6	84
59	Structural and Morphological Evolution of Lead Dendrites during Electrochemical Migration. Scientific Reports, 2013, 3, 3227.	3.3	83
60	Tracking Nanoparticle Diffusion and Interaction during Self-Assembly in a Liquid Cell. Nano Letters, 2017, 17, 15-20.	9.1	82
61	Electron Beam Manipulation of Nanoparticles. Nano Letters, 2012, 12, 5644-5648.	9.1	80
62	SnS2 nanoparticle loaded graphene nanocomposites for superior energy storage. Physical Chemistry Chemical Physics, 2012, 14, 6981.	2.8	79
63	Thermoelectric Effect across the Metalâ^'Insulator Domain Walls in VO ₂ Microbeams. Nano Letters, 2009, 9, 4001-4006.	9.1	77
64	<i>In Situ</i> TEM Study of Catalytic Nanoparticle Reactions in Atmospheric Pressure Gas Environment. Microscopy and Microanalysis, 2013, 19, 1558-1568.	0.4	72
65	High-performance carbon nanotube transistors on SrTiO3/Si substrates. Applied Physics Letters, 2004, 84, 1946-1948.	3.3	70
66	Nanocomposites from Solution‣ynthesized PbTeâ€BiSbTe Nanoheterostructure with Unity Figure of Merit at Lowâ€Medium Temperatures (500–600 K). Advanced Materials, 2017, 29, 1605140.	21.0	70
67	In situ TEM study of the Li–Au reaction in an electrochemical liquid cell. Faraday Discussions, 2014, 176, 95-107.	3.2	60
68	Visualization of the Coalescence of Bismuth Nanoparticles. Microscopy and Microanalysis, 2014, 20, 416-424.	0.4	58
69	Electrode roughness dependent electrodeposition of sodium at the nanoscale. Nano Energy, 2020, 72, 104721.	16.0	54
70	Dynamic deformability of individual PbSe nanocrystals during superlattice phase transitions. Science Advances, 2019, 5, eaaw5623.	10.3	52
71	In Situ Study of Fe ₃ Pt–Fe ₂ O ₃ Core–Shell Nanoparticle Formation. Journal of the American Chemical Society, 2015, 137, 14850-14853.	13.7	51
72	Controlled Synthesis and Size-Dependent Polarization Domain Structure of Colloidal Germanium Telluride Nanocrystals. Journal of the American Chemical Society, 2011, 133, 2044-2047.	13.7	49

#	Article	IF	CITATIONS
73	Nanostructured flexible Mg-modified LiMnPO ₄ matrix as high-rate cathode materials for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 6368-6373.	10.3	47
74	Highly efficient and wellâ€controlled ambient temperature RAFT polymerization of glycidyl methacrylate under visible light radiation. Journal of Polymer Science Part A, 2007, 45, 5091-5102.	2.3	45
75	MoS ₂ Liquid Cell Electron Microscopy Through Clean and Fast Polymer-Free MoS ₂ Transfer. Nano Letters, 2019, 19, 1788-1795.	9.1	45
76	Unveiling the mechanisms of lithium dendrite suppression by cationic polymer film induced solid–electrolyte interphase modification. Energy and Environmental Science, 2020, 13, 1832-1842.	30.8	45
77	Visualization of facet-dependent pseudo-photocatalytic behavior of TiO2 nanorods for water splitting using In situ liquid cell TEM. Nano Energy, 2019, 62, 507-512.	16.0	44
78	Selective Placement of Faceted Metal Tips on Semiconductor Nanorods. Angewandte Chemie - International Edition, 2013, 52, 980-982.	13.8	43
79	Tuning Complex Transition Metal Hydroxide Nanostructures as Active Catalysts for Water Oxidation by a Laser–Chemical Route. Nano Letters, 2015, 15, 2498-2503.	9.1	42
80	Crystallization of Mordenite Platelets using Cooperative Organic Structure-Directing Agents. Journal of the American Chemical Society, 2019, 141, 20155-20165.	13.7	42
81	Chemically Stable Polyarylether-Based Metallophthalocyanine Frameworks with High Carrier Mobilities for Capacitive Energy Storage. Journal of the American Chemical Society, 2021, 143, 17701-17707.	13.7	42
82	Visualization of Colloidal Nanocrystal Formation and Electrode–Electrolyte Interfaces in Liquids Using TEM. Accounts of Chemical Research, 2017, 50, 1808-1817.	15.6	40
83	In Situ Study of Spinel Ferrite Nanocrystal Growth Using Liquid Cell Transmission Electron Microscopy. Chemistry of Materials, 2015, 27, 8146-8152.	6.7	39
84	Dynamics of Nanoscale Dendrite Formation in Solution Growth Revealed Through in Situ Liquid Cell Electron Microscopy. Nano Letters, 2018, 18, 6427-6433.	9.1	38
85	Modification of critical current density of MgB2 films irradiated with 200 MeV Ag ions. Applied Physics Letters, 2004, 84, 2352-2354.	3.3	37
86	Partial Dislocations in Graphene and Their Atomic Level Migration Dynamics. Nano Letters, 2015, 15, 5950-5955.	9.1	37
87	Tracking the Effects of Ligands on Oxidative Etching of Gold Nanorods in Graphene Liquid Cell Electron Microscopy. ACS Nano, 2020, 14, 10239-10250.	14.6	35
88	Dynamic behavior of nanoscale liquids in graphene liquid cells revealed by in situ transmission electron microscopy. Micron, 2019, 116, 22-29.	2.2	31
89	Self-assembled vertical heteroepitaxial nanostructures: from growth to functionalities. MRS Communications, 2014, 4, 31-44.	1.8	29
90	Electrically driven cation exchange for in situ fabrication of individual nanostructures. Nature Communications, 2017, 8, 14889.	12.8	29

#	Article	IF	CITATIONS
91	Selective nitrogen doping of graphene oxide by laser irradiation for enhanced hydrogen evolution activity. Chemical Communications, 2018, 54, 13726-13729.	4.1	28
92	In situ TEM observation of calcium silicate hydrate nanostructure at high temperatures. Cement and Concrete Research, 2021, 149, 106579.	11.0	28
93	Perspectives on in situ electron microscopy. Ultramicroscopy, 2017, 180, 188-196.	1.9	26
94	Liquid phase transmission electron microscopy for imaging of nanoscale processes in solution. MRS Bulletin, 2020, 45, 704-712.	3.5	26
95	On-Column 2 <i>p</i> Bound State with Topological Charge ±1 Excited by an Atomic-Size Vortex Beam in an Aberration-Corrected Scanning Transmission Electron Microscope. Microscopy and Microanalysis, 2012, 18, 711-719.	0.4	24
96	Using molecular tweezers to move and image nanoparticles. Nanoscale, 2013, 5, 4070.	5.6	24
97	Selfâ€Passivation of Defects: Effects of Highâ€Energy Particle Irradiation on the Elastic Modulus of Multilayer Graphene. Advanced Materials, 2015, 27, 6841-6847.	21.0	24
98	Aggregation dynamics of nanoparticles at solid–liquid interfaces. Nanoscale, 2017, 9, 10044-10050.	5.6	24
99	Nanoscale x-ray magnetic circular dichroism probing of electric-field-induced magnetic switching in multiferroic nanostructures. Applied Physics Letters, 2007, 90, 123104.	3.3	23
100	Revealing of the Activation Pathway and Cathode Electrolyte Interphase Evolution of Li-Rich 0.5Li ₂ MnO ₃ ·0.5LiNi _{0.3} Co _{0.3} Mn _{0.4} O _{2< Cathode by in Situ Electrochemical Quartz Crystal Microbalance. ACS Applied Materials & amp; Interfaces, 2019, 11, 16214-16222.}		23
101	Strain-Mediated Interfacial Dynamics during Au–PbS Core–Shell Nanostructure Formation. ACS Nano, 2016, 10, 6235-6240.	14.6	21
102	Identifying surface structural changes in a newly-developed Ga-based alloy with melting temperature below 10â€Â°C. Applied Surface Science, 2019, 492, 143-149.	6.1	21
103	Structural and Chemical Evolution of Amorphous Nickel Iron Complex Hydroxide upon Lithiation/Delithiation. Chemistry of Materials, 2015, 27, 1583-1589.	6.7	20
104	In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces. Scientific Reports, 2017, 7, 42527.	3.3	20
105	In situ TEM observation of neck formation during oriented attachment of PbSe nanocrystals. Nano Research, 2019, 12, 2549-2553.	10.4	20
106	Epitaxially induced high temperature (>900K) cubic-tetragonal structural phase transition in BaTiO3 thin films. Applied Physics Letters, 2004, 85, 4109-4111.	3.3	19
107	Bubble nucleation and migration in a lead–iron hydr(oxide) core–shell nanoparticle. Proceedings of the United States of America, 2015, 112, 12928-12932.	7.1	19
108	Revealing Cation-Exchange-Induced Phase Transformations in Multielemental Chalcogenide Nanoparticles. Chemistry of Materials, 2017, 29, 9192-9199.	6.7	19

#	Article	IF	CITATIONS
109	Solid–liquid–gas reaction accelerated by gas molecule tunnelling-like effect. Nature Materials, 2022, 21, 859-863.	27.5	19
110	In Situ TEM Study of the Degradation of PbSe Nanocrystals in Air. Chemistry of Materials, 2019, 31, 190-199.	6.7	18
111	Defect-mediated ripening of core-shell nanostructures. Nature Communications, 2022, 13, 2211.	12.8	17
112	Origin of antiphase domain boundaries and their effect on the dielectric constant of Ba0.5Sr0.5TiO3 films grown on MgO substrates. Applied Physics Letters, 2002, 81, 4398-4400.	3.3	16
113	Electrical Breakdown of Suspended Mono- and Few-Layer Tungsten Disulfide <i>via</i> Sulfur Depletion Identified by <i>in Situ</i> Atomic Imaging. ACS Nano, 2017, 11, 9435-9444.	14.6	16
114	Understanding the role of water-soluble guar gum binder in reducing capacity fading and voltage decay of Li-rich cathode for Li-ion batteries. Electrochimica Acta, 2020, 351, 136401.	5.2	16
115	Growth mechanism of core–shell PtNi–Ni nanoparticles using in situ transmission electron microscopy. Nanoscale, 2018, 10, 11281-11286.	5.6	15
116	Identification of a quasi-liquid phase at solid–liquid interface. Nature Communications, 2022, 13, .	12.8	15
117	Size and shape evolution of embedded single-crystal α-Fe nanowires. Applied Physics Letters, 2005, 87, 203110.	3.3	14
118	Suppression of antiphase domain boundary formation in Ba0.5Sr0.5TiO3 films grown on vicinal MgO substrates. Applied Physics Letters, 2004, 85, 2905-2907.	3.3	13
119	Facile synthesis of wellâ€defined pHâ€liable Schiffâ€baseâ€type photosensitive polymers via visibleâ€lightâ€activated ambient temperature RAFT polymerization. Journal of Polymer Science Part A, 2009, 47, 6668-6681.	2.3	13
120	Controlling electron beam-induced structure modifications and cation exchange in cadmium sulfide–copper sulfide heterostructured nanorods. Ultramicroscopy, 2013, 134, 207-213.	1.9	13
121	Imaging, understanding, and control of nanoscale materials transformations. MRS Bulletin, 2021, 46, 443-450.	3.5	13
122	Tailoring Transitionâ€Metal Hydroxides and Oxides by Photonâ€Induced Reactions. Angewandte Chemie - International Edition, 2016, 55, 14272-14276.	13.8	11
123	Spring-Like Pseudoelectroelasticity of Monocrystalline Cu ₂ S Nanowire. Nano Letters, 2018, 18, 5070-5077.	9.1	11
124	Negative Electro-conductance in Suspended 2D WS ₂ Nanoscale Devices. ACS Applied Materials & Interfaces, 2016, 8, 32963-32970.	8.0	10
125	Growth and assembly of cobalt oxide nanoparticle rings at liquid nanodroplets with solid junction. Nanoscale, 2017, 9, 13915-13921.	5.6	10
126	Spontaneous Reshaping and Splitting of AgCl Nanocrystals under Electron Beam Illumination. Small, 2018, 14, e1803231.	10.0	10

#	Article	IF	CITATIONS
127	Observation of Surface Ligands-Controlled Etching of Palladium Nanocrystals. Nano Letters, 2021, 21, 6640-6647.	9.1	10
128	Transmission Electron Microscopy for Chemists. Accounts of Chemical Research, 2017, 50, 1795-1796.	15.6	9
129	Efficient CO2 reduction MOFs derivatives transformation mechanism revealed by in-situ liquid phase TEM. Applied Catalysis B: Environmental, 2022, 307, 121164.	20.2	9
130	Real time imaging of two-dimensional iron oxide spherulite nanostructure formation. Nano Research, 2019, 12, 2889-2893.	10.4	8
131	Controlled oxidative etching of gold nanorods revealed through in-situ liquid cell electron microscopy. Science China Materials, 2020, 63, 2599-2605.	6.3	8
132	Local dielectric measurements of BaTiO3–CoFe2O4 nanocomposites through microwave microscopy. Journal of Materials Research, 2007, 22, 1193-1199.	2.6	7
133	Revealing Dynamic Processes of Materials in Liquids Using Liquid Cell Transmission Electron Microscopy. Journal of Visualized Experiments, 2012, , .	0.3	7
134	Scanning Confocal Electron Energy-Loss Microscopy Using Valence-Loss Signals. Microscopy and Microanalysis, 2013, 19, 1036-1049.	0.4	7
135	A unique pathway of PtNi nanoparticle formation observed with liquid cell transmission electron microscopy. Nanoscale, 2020, 12, 1414-1418.	5.6	7
136	Recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures. Nano Research, 2017, 10, 1498-1509.	10.4	6
137	Anomalously high electronic thermal conductivity and Lorenz ratio in Bi2Te3 nanoribbons far from the bipolar condition. Applied Physics Letters, 2019, 114, .	3.3	5
138	Dynamics of Polymer Nanocapsule Buckling and Collapse Revealed by <i>In Situ</i> Liquid-Phase TEM. Langmuir, 2022, 38, 7168-7178.	3.5	5
139	Hybrid nanocapsules for <i>in situ</i> TEM imaging of gas evolution reactions in confined liquids. Nanoscale, 2020, 12, 18606-18615.	5.6	4
140	Efficient Enhancement of Stability and Luminescence of Three-Dimensional CsPbBr ₃ Nanoparticles via Ligand-Triggered Transformation into Zero-Dimensional Cs ₄ PbBr ₆ Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 4172-4181.	3.1	4
141	Real time observation of gold nanoparticle aggregation dynamics on a 2D membrane. Microscopy and Microanalysis, 2016, 22, 808-809.	0.4	3
142	Liquid Pockets Encapsulated in MoS2 Liquid Cells. Microscopy and Microanalysis, 2019, 25, 1406-1407.	0.4	3
143	Influence of sub-zero temperature on nucleation and growth of copper nanoparticles in electrochemical reactions. IScience, 2021, 24, 103289.	4.1	3
144	Imaging of Pt3Fe Nanwire Growth in Liquids by In situ TEM. Microscopy and Microanalysis, 2012, 18, 1092-1093.	0.4	2

#	Article	IF	CITATIONS
145	Growth of Transition Metal Oxides in Solution under Liquid Cell Electron Microscopy and Electron Beam Effects. Microscopy and Microanalysis, 2015, 21, 1123-1124.	0.4	2
146	Tailoring Transitionâ€Metal Hydroxides and Oxides by Photonâ€Induced Reactions. Angewandte Chemie, 2016, 128, 14484-14488.	2.0	2
147	Anomalous Shape Evolution of Ag ₂ O ₂ Nanocrystals Modulated by Surface Adsorbates during Electron Beam Etching. Nano Letters, 2019, 19, 591-597.	9.1	2
148	Generating and Capturing Secondary Hot Carriers in Monolayer Tungsten Dichalcogenides. Journal of Physical Chemistry Letters, 2022, 13, 5703-5710.	4.6	2
149	Quantitative Confocal Sectioning in Double-Corrected STEM Utilizing Electron Energy Loss Spectroscopy and Post-Specimen Cc Correction. Microscopy and Microanalysis, 2012, 18, 1026-1027.	0.4	1
150	Response to "Electron Microscopy of Biological Specimens in Liquid Water― Biophysical Journal, 2012, 103, 165-166.	0.5	1
151	Imaging Protein in Water with Nanometer Resolution. Biophysical Journal, 2012, 102, 386a-387a.	0.5	1
152	Electrochemical conversion and storage systems: general discussion. Faraday Discussions, 2014, 176, 153-184.	3.2	1
153	Nanostructure Growth, Interactions, and Assembly in the Liquid Phase. , 0, , 191-209.		1
154	Insights into the Defect Structure Resulting from the Hydrogen Absorption in Palladium Nanocubes Using Liquid Cell Transmission Electron Microscopy. Microscopy and Microanalysis, 2021, 27, 2100-2101.	0.4	1
155	Magneto-Optical Kerr Effect in Multiferroic Nanostructures. Materials Research Society Symposia Proceedings, 2006, 966, 1.	0.1	0
156	Observation of Dynamic Structural Transformations in a Copper Sulfide Nanorod by TEM. Microscopy and Microanalysis, 2011, 17, 1644-1645.	0.4	0
157	Nanometer-Scale Electron Microscopy of Proteins in Liquid. Microscopy and Microanalysis, 2011, 17, 120-121.	0.4	Ο
158	Observation of Single Nanocrystal Growth Trajectories in Solution Using Liquid Cell TEM. Microscopy and Microanalysis, 2011, 17, 1716-1717.	0.4	0
159	Revealing Correlation of Valence State with Structural Coarsening in Nanoporous Co/Silica Catalysts by in situ Environmental TEM and EELS. Microscopy and Microanalysis, 2012, 18, 1116-1117.	0.4	Ο
160	Transmission Electron Microscopy Imaging of Structural Transformation Dynamics in a Single Nanocrystal. Microscopy Today, 2012, 20, 18-22.	0.3	0
161	In-situ Electrochemical Liquid Cell TEM Visualization of Electrode-Electrolyte Interfaces. Microscopy and Microanalysis, 2014, 20, 424-425.	0.4	0
162	The Two Dimensional Nanoplate Dynamics Revealed by in situ Liquid Cell TEM. Microscopy and Microanalysis, 2015, 21, 261-262.	0.4	0

#	Article	IF	CITATIONS
163	Liquid Cell TEM Study of Nanoparticle Diffusion and Interaction in Liquids. Microscopy and Microanalysis, 2016, 22, 742-743.	0.4	0
164	Liquid Cell TEM Observation of Platinum Based Alloy Nanoparticle Growth. Microscopy and Microanalysis, 2017, 23, 1980-1981.	0.4	0
165	Visualization of Electrochemical Reaction Dynamics in Liquids Using TEM. Microscopy and Microanalysis, 2017, 23, 884-885.	0.4	0
166	Nanocrystal Dynamics: Spontaneous Reshaping and Splitting of AgCl Nanocrystals under Electron Beam Illumination (Small 48/2018). Small, 2018, 14, 1870231.	10.0	0
167	In-situ TEM Study on Sub-10 nm Materials. Microscopy and Microanalysis, 2018, 24, 1650-1651.	0.4	0
168	Liquid Cell TEM Study of Nucleation and Growth of Dendrites. Microscopy and Microanalysis, 2018, 24, 250-251.	0.4	0
169	Diffraction imaging of organic materials in extreme environments. Microscopy and Microanalysis, 2021, 27, 1802-1803.	0.4	0
170	Development of liquid cells for high resolution imaging and chemical analysis in situ with Transmission Electron Microscopy. Microscopy and Microanalysis, 2021, 27, 804-806.	0.4	0
171	Radiolysis Characterization in Liquid Cell STEM Using Ultra Low-Dose Electron Energy-Loss Spectroscopy. Microscopy and Microanalysis, 2021, 27, 2626-2628.	0.4	0
172	SnS2-Graphene Nanocomposite for Advanced Lithium-Ion Battery. ECS Meeting Abstracts, 2012, , .	0.0	0