Joseph W Polli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9006465/publications.pdf Version: 2024-02-01

LOSEDH W DOLL

#	Article	IF	CITATIONS
1	Membrane transporters in drug development. Nature Reviews Drug Discovery, 2010, 9, 215-236.	46.4	2,886
2	Passive Permeability and P-Glycoprotein-Mediated Efflux Differentiate Central Nervous System (CNS) and Non-CNS Marketed Drugs. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 1029-1037.	2.5	567
3	IN VITRO P-GLYCOPROTEIN INHIBITION ASSAYS FOR ASSESSMENT OF CLINICAL DRUG INTERACTION POTENTIAL OF NEW DRUG CANDIDATES: A RECOMMENDATION FOR PROBE SUBSTRATES. Drug Metabolism and Disposition, 2006, 34, 786-792.	3.3	256
4	An Unexpected Synergist Role of P-Glycoprotein and Breast Cancer Resistance Protein on the Central Nervous System Penetration of the Tyrosine Kinase Inhibitor Lapatinib (<i>N</i> -{3-Chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quir	nazolinami	ne ;) Tj ETQq(
5	The Role of Efflux and Uptake Transporters in <i>N</i> -{3-Chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-qu (GW572016, Lapatinib) Disposition and Drug Interactions. Drug Metabolism and Disposition, 2008, 36, 695-701.	inazolinam	nine 226
6	Role of P-glycoprotein on the CNS disposition of amprenavir (141W94), an HIV protease inhibitor. Pharmaceutical Research, 1999, 16, 1206-1212.	3.5	205
7	In Vitro Investigations into the Roles of Drug Transporters and Metabolizing Enzymes in the Disposition and Drug Interactions of Dolutegravir, a HIV Integrase Inhibitor. Drug Metabolism and Disposition, 2013, 41, 353-361.	3.3	201
8	Vitamin E-TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability. Pharmaceutical Research, 1999, 16, 1812-1817.	3.5	199
9	Lapatinib Distribution in HER2 Overexpressing Experimental Brain Metastases of Breast Cancer. Pharmaceutical Research, 2012, 29, 770-781.	3.5	182
10	Breast Cancer Resistance Protein (ABCG2) in Clinical Pharmacokinetics and Drug Interactions: Practical Recommendations for Clinical Victim and Perpetrator Drug-Drug Interaction Study Design. Drug Metabolism and Disposition, 2015, 43, 490-509.	3.3	116
11	Influence of passive permeability on apparent P-glycoprotein kinetics. Pharmaceutical Research, 2000, 17, 1456-1460.	3.5	111
12	P-glycoprotein-mediated transport of morphine in brain capillary endothelial cells. Biochemical Pharmacology, 1999, 58, 951-957.	4.4	102
13	Predicting P-glycoprotein substrates by a quantitative structure–activity relationship model. Journal of Pharmaceutical Sciences, 2004, 93, 957-968.	3.3	100
14	Diseaseâ€Associated Changes in Drug Transporters May Impact the Pharmacokinetics and/or Toxicity of Drugs: A White Paper From the International Transporter Consortium. Clinical Pharmacology and Therapeutics, 2018, 104, 900-915.	4.7	91
15	Biopharmaceutics Classification System: Validation and Learnings of an in Vitro Permeability Assay. Molecular Pharmaceutics, 2009, 6, 11-18.	4.6	83
16	Pâ€glycoprotein Influences the Brain Concentrations of Cetirizine (Zyrtec®), a Secondâ€Generation Nonâ€5edating Antihistamine. Journal of Pharmaceutical Sciences, 2003, 92, 2082-2089.	3.3	76
17	Toxicity and toxicokinetics of metformin in rats. Toxicology and Applied Pharmacology, 2010, 243, 340-347.	2.8	75
18	Expression of the calmodulin-dependent protein phosphatase, calcineurin, in rat brain: developmental patterns and the role of nigrostriatal innervation. Developmental Brain Research, 1991, 63, 105-119.	1.7	74

Joseph W Polli

#	Article	IF	CITATIONS
19	Central Nervous System Disposition and Metabolism of Fosdevirine (GSK2248761), a Non-Nucleoside Reverse Transcriptase Inhibitor: An LC-MS and Matrix-Assisted Laser Desorption/Ionization Imaging MS Investigation into Central Nervous System Toxicity. Chemical Research in Toxicology, 2013, 26, 241-251.	3.3	67
20	MULTIPLE MECHANISMS ARE INVOLVED IN THE BILIARY EXCRETION OF ACETAMINOPHEN SULFATE IN THE RAT: ROLE OF MRP2 AND BCRP1. Drug Metabolism and Disposition, 2005, 33, 1158-1165.	3.3	64
21	Midazolam exhibits characteristics of a highly permeable P-glycoprotein substrate. Pharmaceutical Research, 2003, 20, 757-764.	3.5	63
22	Steady-State Brain Concentrations of Antihistamines in Rats. Pharmacology, 2004, 72, 92-98.	2.2	63
23	Exact kinetic analysis of passive transport across a polarized confluent MDCK cell monolayer modeled as a single barrier. Journal of Pharmaceutical Sciences, 2004, 93, 2108-2123.	3.3	62
24	PhRMA White Paper on ADME Pharmacogenomics. Journal of Clinical Pharmacology, 2008, 48, 849-889.	2.0	62
25	The Elementary Mass Action Rate Constants of P-gp Transport for a Confluent Monolayer of MDCKII-hMDR1 Cells. Biophysical Journal, 2005, 88, 715-738.	0.5	60
26	Kinetic Identification of Membrane Transporters That Assist P-glycoprotein-Mediated Transport of Digoxin and Loperamide through a Confluent Monolayer of MDCKII-hMDR1 Cells. Drug Metabolism and Disposition, 2008, 36, 452-460.	3.3	54
27	Understanding the Transport Properties of Metabolites: Case Studies and Considerations for Drug Development. Drug Metabolism and Disposition, 2014, 42, 650-664.	3.3	53
28	The Steady-State Michaelis–Menten Analysis of P-Glycoprotein Mediated Transport Through a Confluent Cell Monolayer Cannot Predict the Correct Michaelis Constant Km. Pharmaceutical Research, 2005, 22, 1667-1677.	3.5	49
29	Oral Sulfasalazine as a Clinical BCRP Probe Substrate: Pharmacokinetic Effects of Genetic Variation (C421A) and Pantoprazole Coadministration. Journal of Pharmaceutical Sciences, 2010, 99, 1046-1062.	3.3	45
30	Evaluation of drug interactions of GSK1292263 (a GPR119 agonist) with statins: from <i>in vitro</i> data to clinical study design. Xenobiotica, 2013, 43, 498-508.	1.1	42
31	The <i>ABCG2</i> C421A polymorphism does not affect oral nitrofurantoin pharmacokinetics in healthy Chinese male subjects. British Journal of Clinical Pharmacology, 2008, 66, 233-239.	2.4	41
32	Prospective CYP2D6 genotyping as an exclusion criterion for enrollment of a phase III clinical trial. Pharmacogenetics and Genomics, 2000, 10, 583-590.	5.7	40
33	Use of cassette dosing in sandwich-cultured rat and human hepatocytes to identify drugs that inhibit bile acid transport. Toxicology in Vitro, 2010, 24, 297-309.	2.4	39
34	Drug interaction profile of the HIV integrase inhibitor cabotegravir: assessment from <i>in vitro</i> studies and a clinical investigation with midazolam. Xenobiotica, 2016, 46, 445-456.	1.1	38
35	First human dose-escalation study with remogliflozin etabonate, a selective inhibitor of the sodium-glucose transporter 2 (SGLT2), in healthy subjects and in subjects with type 2 diabetes mellitus. BMC Pharmacology & Toxicology, 2013, 14, 26.	2.4	36
36	Assessment of the Drug Interaction Risk for Remogliflozin Etabonate, a Sodium-Dependent Glucose Cotransporter-2 Inhibitor: Evidence from In Vitro, Human Mass Balance, and Ketoconazole Interaction Studies. Drug Metabolism and Disposition, 2012, 40, 2090-2101.	3.3	33

Joseph W Polli

#	Article	IF	CITATIONS
37	Safety, pharmacokinetics and pharmacodynamics of remogliflozin etabonate, a novel SGLT2 inhibitor, and metformin when co-administered in subjects with type 2 diabetes mellitus. BMC Pharmacology & Toxicology, 2013, 14, 25.	2.4	33
38	Developmental expression of calmodulin-dependent cyclic nucleotide phosphodiesterase in rat brain. Developmental Brain Research, 1990, 53, 253-263.	1.7	29
39	THE SYSTEMIC EXPOSURE OF AN N-METHYL-d-ASPARTATE RECEPTOR ANTAGONIST IS LIMITED IN MICE BY THE P-GLYCOPROTEIN AND BREAST CANCER RESISTANCE PROTEIN EFFLUX TRANSPORTERS. Drug Metabolism and Disposition, 2004, 32, 722-726.	3.3	29
40	If the <i>K</i> _I Is Defined by the Free Energy of Binding to P-Glycoprotein, Which Kinetic Parameters Define the IC ₅₀ for the Madin-Darby Canine Kidney II Cell Line Overexpressing Human Multidrug Resistance 1 Confluent Cell Monolayer?. Drug Metabolism and Disposition, 2010, 38, 260-269.	3.3	28
41	P-Glycoprotein (P-gp) Expressed in a Confluent Monolayer of hMDR1â^MDCKII Cells Has More Than One Efflux Pathway with Cooperative Binding Sites. Biochemistry, 2006, 45, 15505-15519.	2.5	26
42	[53] Identification of calmodulin-binding proteins. Methods in Enzymology, 1990, 184, 451-467.	1.0	20
43	In Vitro absorption and secretory quotients: Practical criteria derived from a study of 331 compounds to assess for the impact of P-glycoprotein-mediated efflux on drug candidates. Journal of Pharmaceutical Sciences, 2004, 93, 2567-2572.	3.3	17
44	Developmental expression of neuronal calmodulin-binding proteins in rat brain. Developmental Brain Research, 1990, 53, 62-70.	1.7	9
45	Assessment of Remogliflozin Etabonate, a Sodium-Dependent Glucose Co-Transporter-2 Inhibitor, as a Perpetrator of Clinical Drug Interactions: A Study on Drug Transporters and Metabolic Enzymes. Journal of Diabetes & Metabolism, 2012, 03, .	0.2	8
46	Expression of Calmodulin-Dependent Phosphodiesterase, Calmodulin-Dependent Protein Phosphatase, and Other Calmodulin-Binding Proteins in Human SMS-KCNR Neuroblastoma Cells. Journal of Neurochemistry, 1989, 52, 1438-1448.	3.9	6
47	Expression of calmodulin-dependent enzymes in developing rat striatum is not affected by perturbation of dopaminergic systems. Synapse, 1991, 9, 136-143.	1.2	6
48	Response from the International Transporter Consortium. Nature Reviews Drug Discovery, 2011, 10, 75-75.	46.4	5
49	Mechanistic Basis of Cabotegravir–Glucuronide Disposition in Humans. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 269-277.	2.5	4
50	Hepatobiliary Disposition of Atovaquone: A Case of Mechanistically Unusual Biliary Clearance. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 37-45.	2.5	1
51	Drug Development Strategy in the United States: An Industrial View of DMPK. Acta Pharmaceutica Hungarica, 2021, 91, 103-105.	0.1	0