Ute Römling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9006363/publications.pdf

Version: 2024-02-01

145 papers 13,259 citations

52 h-index 23533 111 g-index

155 all docs

155 docs citations

155 times ranked 9561 citing authors

#	Article	IF	CITATIONS
1	Yin and Yang of Biofilm Formation and Cyclic di-GMP Signaling of the Gastrointestinal Pathogen <i>Salmonella enterica</i> Serovar Typhimurium. Journal of Innate Immunity, 2022, 14, 275-292.	3.8	8
2	Comparative Genomics of Cyclic di-GMP Metabolism and Chemosensory Pathways in Shewanella algae Strains: Novel Bacterial Sensory Domains and Functional Insights into Lifestyle Regulation. MSystems, 2022, 7, e0151821.	3.8	11
3	A mass spectrometryâ€based nonâ€radioactive differential radial capillary action of ligand assay (DRaCALA) to assess ligand binding to proteins. Journal of Mass Spectrometry, 2022, 57, e4822.	1.6	3
4	The power of unbiased phenotypic screens – cellulose as a first receptor for the Schitoviridae phage <scp>S6</scp> of <i>Erwinia amylovora</i> . Environmental Microbiology, 2022, , .	3.8	2
5	Deciphering Molecular Mechanism Underlying Self-Flocculation of Zymomonas mobilis for Robust Production. Applied and Environmental Microbiology, 2022, 88, e0239821.	3.1	4
6	Patatin-like phospholipase CapV in Escherichia coli - morphological and physiological effects of one amino acid substitution. Npj Biofilms and Microbiomes, 2022, 8, 39.	6.4	3
7	A recently isolated human commensal <i>Escherichia coli</i> ST10 clone member mediates enhanced thermotolerance and tetrathionate respiration on a P1 phageâ€derived IncY plasmid. Molecular Microbiology, 2021, 115, 255-271.	2.5	21
8	Basic mechanism of the autonomous ClpG disaggregase. Journal of Biological Chemistry, 2021, 296, 100460.	3.4	9
9	Reduction of alternative electron acceptors drives biofilm formation in Shewanella algae. Npj Biofilms and Microbiomes, 2021, 7, 9.	6.4	15
10	Regulation of colony morphology and biofilm formation in Shewanella algae. Microbial Biotechnology, 2021, 14, 1183-1200.	4.2	7
11	Horizontal Transmission of Stress Resistance Genes Shape the Ecology of Beta- and Gamma-Proteobacteria. Frontiers in Microbiology, 2021, 12, 696522.	3.5	20
12	Complete Genome Sequence and Methylome of the Type Strain of Shewanella algae. Microbiology Resource Announcements, 2021, 10, e0055921.	0.6	3
13	2â€Methylcitrate cycle: a wellâ€regulated controller of <scp><i>Bacillus</i></scp> sporulation. Environmental Microbiology, 2020, 22, 1125-1140.	3.8	19
14	Why? – Successful <i>Pseudomonas aeruginosa</i> clones with a focus on clone C. FEMS Microbiology Reviews, 2020, 44, 740-762.	8.6	22
15	Clarithromycin Exerts an Antibiofilm Effect against <i>Salmonella enterica</i> Serovar Typhimurium rdar Biofilm Formation and Transforms the Physiology towards an Apparent Oxygen-Depleted Energy and Carbon Metabolism. Infection and Immunity, 2020, 88, .	2.2	4
16	A Cyclic di-GMP Network Is Present in Gram-Positive <i>Streptococcus</i> and Gram-Negative <i>Proteus</i> Species. ACS Infectious Diseases, 2020, 6, 2672-2687.	3.8	10
17	Draft Genome Sequence of the Urinary Catheter Isolate Enterobacter ludwigii CEB04 with High Biofilm Forming Capacity. Microorganisms, 2020, 8, 522.	3.6	2
18	Cyclic di-GMP Signaling in Salmonella enterica serovar Typhimurium., 2020,, 395-425.		4

#	Article	IF	CITATIONS
19	Impact of manganese on biofilm formation and cell morphology of <i>Candida parapsilosis</i> clinical isolates with different biofilm forming abilities. FEMS Yeast Research, 2019, 19, .	2.3	6
20	Two FtsH Proteases Contribute to Fitness and Adaptation of Pseudomonas aeruginosa Clone C Strains. Frontiers in Microbiology, 2019, 10, 1372.	3.5	22
21	DncV Synthesizes Cyclic GMP-AMP and Regulates Biofilm Formation and Motility in <i>Escherichia coli</i>	4.1	26
22	A unique methylation pattern by a type I HsdM methyltransferase prepares for DpnI rare cutting sites in the <i>Pseudomonas aeruginosa</i> PAO1 genome. FEMS Microbiology Letters, 2019, 366, .	1.8	2
23	Innate Immune Mechanisms with a Focus on Small-Molecule Microbe-Host Cross Talk. Journal of Innate Immunity, 2019, 11, 191-192.	3.8	3
24	ClpG Provides Increased Heat Resistance by Acting as Superior Disaggregase. Biomolecules, 2019, 9, 815.	4.0	14
25	High frequency of double crossover recombination facilitates genome engineering in Pseudomonas aeruginosa PA14 and clone C strains. Microbiology (United Kingdom), 2019, 165, 757-760.	1.8	1
26	Stand-alone ClpG disaggregase confers superior heat tolerance to bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E273-E282.	7.1	37
27	"lt's a gut feeling―– <i>Escherichia coli</i> biofilm formation in the gastrointestinal tract environment. Critical Reviews in Microbiology, 2018, 44, 1-30.	6.1	87
28	Multilocus sequence typing identifies disease-causing Shewanella chilikensis strain 614. FEMS Microbiology Ecology, 2018, 95, .	2.7	15
29	The cellulose synthase BcsA plays a role in interactions of Salmonella typhimurium with Acanthamoeba castellanii genotype T4. Parasitology Research, 2018, 117, 2283-2289.	1.6	7
30	Structural and Functional Characterization of the BcsG Subunit of the Cellulose Synthase in Salmonella typhimurium. Journal of Molecular Biology, 2018, 430, 3170-3189.	4.2	29
31	JAGN1 is required for fungal killing in neutrophil extracellular traps: Implications for severe congenital neutropenia. Journal of Leukocyte Biology, 2018, 104, 1199-1213.	3.3	23
32	In vivo Analysis of Cyclic di-GMP Cyclase and Phosphodiesterase Activity in Escherichia coli Using a Vc2 Riboswitch-based Assay. Bio-protocol, 2018, 8, e2753.	0.4	1
33	Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium. BMC Microbiology, 2017, 17, 27.	3.3	37
34	Draft Genome Sequences of Semiconstitutive Red, Dry, and Rough Biofilm-Forming Commensal and Uropathogenic Escherichia coli Isolates. Genome Announcements, 2017, 5, .	0.8	5
35	Progress in Understanding the Molecular Basis Underlying Functional Diversification of Cyclic Dinucleotide Turnover Proteins. Journal of Bacteriology, 2017, 199, .	2.2	41
36	Discovery of the Second Messenger Cyclic di-GMP. Methods in Molecular Biology, 2017, 1657, 1-8.	0.9	34

#	Article	IF	Citations
37	Alterations of câ€diâ€ <scp>GMP</scp> turnover proteins modulate semiâ€constitutive rdar biofilm formation in commensal and uropathogenic <i>Escherichia coli</i> . MicrobiologyOpen, 2017, 6, e00508.	3.0	25
38	Ancient permafrost staphylococci carry antibiotic resistance genes. Microbial Ecology in Health and Disease, 2017, 28, 1345574.	3.5	21
39	Stand-Alone EAL Domain Proteins Form a Distinct Subclass of EAL Proteins Involved in Regulation of Cell Motility and Biofilm Formation in Enterobacteria. Journal of Bacteriology, 2017, 199, .	2.2	36
40	Gre factors-mediated control of hilD transcription is essential for the invasion of epithelial cells by Salmonella enterica serovar Typhimurium. PLoS Pathogens, 2017, 13, e1006312.	4.7	34
41	Shewanella spp. infections in Gran Canaria, Spain: retrospective analysis of 31 cases and a literature review. JMM Case Reports, 2017, 4, e005131.	1.3	30
42	Nucleotide Second Messenger Signaling as a Target for the Control of Bacterial Biofilm Formation. Current Topics in Medicinal Chemistry, 2017, 17, 1928-1944.	2.1	20
43	Nucleotide Second Messenger Signaling as a Target for the Control of Bacterial Biofilm Formation. Current Topics in Medicinal Chemistry, 2017, , .	2.1	7
44	Editorial overview: Cell regulation: Amazingly sophisticated regulatory processes in bacteria!. Current Opinion in Microbiology, 2016, 30, iv-vii.	5.1	0
45	BcsZ inhibits biofilm phenotypes and promotes virulence by blocking cellulose production in Salmonella enterica serovar Typhimurium. Microbial Cell Factories, 2016, 15, 177.	4.0	57
46	Protein homeostasis — more than resisting a hot bath. Current Opinion in Microbiology, 2016, 30, 147-154.	5.1	33
47	A novel protein quality control mechanism contributes to heat shock resistance of worldwideâ€distributed ⟨scp⟩⟨i⟩P⟨ i⟩⟨ scp⟩⟨i>seudomonas aeruginosa⟨ i⟩ clone ⟨scp⟩C⟨ scp⟩ strains. Environmental Microbiology, 2015, 17, 4511-4526.	3.8	36
48	Small molecules with big effects: Cyclic di-GMP–mediated stimulation of cellulose production by the amino acid ʟ-arginine. Science Signaling, 2015, 8, fs12.	3.6	9
49	Dissecting the cyclic diâ€guanylate monophosphate signalling network regulating motility in <i><scp>S</scp>almonella enterica</i> serovar <scp>T</scp> yphimurium. Environmental Microbiology, 2015, 17, 1310-1320.	3.8	28
50	Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends in Microbiology, 2015, 23, 545-557.	7.7	432
51	Modulation of Biofilm-Formation in Salmonella enterica Serovar Typhimurium by the Periplasmic DsbA/DsbB Oxidoreductase System Requires the GGDEF-EAL Domain Protein STM3615. PLoS ONE, 2014, 9, e106095.	2.5	31
52	Regulation of biofilm formation in <i>Salmonella enterica</i> serovar Typhimurium. Future Microbiology, 2014, 9, 1261-1282.	2.0	77
53	Finally! The structural secrets of a <scp>HD</scp> â€ <scp>GYP</scp> phosphodiesterase revealed. Molecular Microbiology, 2014, 91, 1-5.	2.5	6
54	Characterization of Biofilm Formation and the Role of <i>BCR1</i> in Clinical Isolates of Candida parapsilosis. Eukaryotic Cell, 2014, 13, 438-451.	3.4	34

#	Article	IF	CITATIONS
55	Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microbial Biotechnology, 2014, 7, 496-516.	4.2	202
56	<scp>GIL</scp> , a new câ€diâ€ <scp>GMP</scp> â€binding protein domain involved in regulation of cellulose synthesis in enterobacteria. Molecular Microbiology, 2014, 93, 439-452.	2.5	118
57	Draft Genome Sequence of Pseudomonas aeruginosa SG17M, an Environmental Isolate Belonging to Clone C, Prevalent in Patients and Aquatic Habitats. Genome Announcements, 2014, 2, .	0.8	5
58	Tailoring the effect of antibacterial polyelectrolyte multilayers by choice of cellulosic fiber substrate. Holzforschung, 2013, 67, 573-578.	1.9	4
59	Control of pathogen growth and biofilm formation using a urinary catheter that releases antimicrobial nitrogen oxides. Free Radical Biology and Medicine, 2013, 65, 1257-1264.	2.9	31
60	The <scp>EAL</scp> â€ike protein <scp>STM</scp> 1697 regulates virulence phenotypes, motility and biofilm formation in <i><scp>S</scp>almonella typhimurium</i> . Molecular Microbiology, 2013, 90, 1216-1232.	2.5	38
61	Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger. Microbiology and Molecular Biology Reviews, 2013, 77, 1-52.	6.6	1,479
62	Bacterial communities as capitalist economies. Nature, 2013, 497, 321-322.	27.8	12
63	Prevalence of biofilm formation in clinical isolates of <i>Candida</i> species causing bloodstream infection. Mycoses, 2013, 56, 264-272.	4.0	75
64	Pyrosequencing of a hypervariable region in the internal transcribed spacer 2 to identify clinical yeast isolates. Mycoses, 2012, 55, 172-180.	4.0	7
65	Hfq and Hfq-dependent small RNAs are major contributors to multicellular development in <i>Salmonella enterica</i> serovar Typhimurium. RNA Biology, 2012, 9, 489-502.	3.1	107
66	Biointeractive antibacterial fibres using polyelectrolyte multilayer modification. Cellulose, 2012, 19, 1731-1741.	4.9	30
67	Cyclic diâ€GMP, an established secondary messenger still speeding up. Environmental Microbiology, 2012, 14, 1817-1829.	3.8	81
68	Virulence characteristics of translocating Escherichia coli and the interleukin-8 response to infection. Microbial Pathogenesis, 2011, 50, 81-86.	2.9	3
69	Complex c-di-GMP Signaling Networks Mediate Transition between Virulence Properties and Biofilm Formation in Salmonella enterica Serovar Typhimurium. PLoS ONE, 2011, 6, e28351.	2.5	85
70	Regulation of Biofilm Components in Salmonella enterica Serovar Typhimurium by Lytic Transglycosylases Involved in Cell Wall Turnover. Journal of Bacteriology, 2011, 193, 6443-6451.	2.2	40
71	Opposing Contributions of Polynucleotide Phosphorylase and the Membrane Protein Nlpl to Biofilm Formation by Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2011, 193, 580-582.	2,2	18
72	Characteristics of Biofilms from Urinary Tract Catheters and Presence of Biofilm-Related Components in Escherichia coli. Current Microbiology, 2010, 60, 446-453.	2,2	37

#	Article	IF	CITATIONS
73	Unphosphorylated CsgD controls biofilm formation in <i>Salmonella enterica</i> serovar Typhimurium. Molecular Microbiology, 2010, 77, 771-786.	2.5	102
74	Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis. EMBO Journal, 2010, 29, 1840-1850.	7.8	155
75	A 96-well-plate–based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing. Nature Protocols, 2010, 5, 1460-1469.	12.0	119
76	Cyclic diâ€GMP signalling controls virulence properties of <i>Salmonella enterica</i> serovar Typhimurium at the mucosal lining. Environmental Microbiology, 2010, 12, 40-53.	3.8	62
77	Complex regulatory network encompassing the Csr, câ€diâ€GMP and motility systems of <i>Salmonella</i> Typhimurium. Environmental Microbiology, 2010, 12, 524-540.	3.8	102
78	Uropathogenic Escherichia coli Modulates Immune Responses and Its Curli Fimbriae Interact with the Antimicrobial Peptide LL-37. PLoS Pathogens, 2010, 6, e1001010.	4.7	203
79	Bistable Expression of CsgD in Biofilm Development of <i>Salmonella enterica </i> Serovar Typhimurium. Journal of Bacteriology, 2010, 192, 456-466.	2.2	123
80	A Role for the EAL-Like Protein STM1344 in Regulation of CsgD Expression and Motility in Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2009, 191, 3928-3937.	2.2	50
81	Rationalizing the Evolution of EAL Domain-Based Cyclic di-GMP-Specific Phosphodiesterases. Journal of Bacteriology, 2009, 191, 4697-4700.	2.2	21
82	Prevailing Concepts of c-di-GMP Signaling. Contributions To Microbiology, 2009, 16, 161-181.	2.1	59
83	Cyclic Di-GMP (c-Di-GMP) Goes in1593to Host Cellsâ€"c-Di-GMP Signaling in the Obligate Intracellular Pathogen <i>Anaplasma phagocytophilum</i> Journal of Bacteriology, 2009, 191, 683-686.	2.2	15
84	A study of the antigenicity of <i>Rickettsia helvetica</i> proteins using twoâ€dimensional gel electrophoresis. Apmis, 2009, 117, 253-262.	2.0	21
85	Characterization of cellulose production in <i>Escherichia coli</i> Nissle 1917 and its biological consequences. Environmental Microbiology, 2009, 11, 1105-1116.	3.8	76
86	Quantitative determination of cyclic diguanosine monophosphate concentrations in nucleotide extracts of bacteria by matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry. Analytical Biochemistry, 2009, 386, 53-58.	2.4	69
87	Regulation of c-di-GMP metabolism in biofilms. Future Microbiology, 2009, 4, 341-358.	2.0	52
88	The RNA binding protein CsrA controls cyclic diâ€GMP metabolism by directly regulating the expression of GGDEF proteins. Molecular Microbiology, 2008, 70, 236-257.	2.5	150
89	Great Times for Small Molecules: c-di-AMP, a Second Messenger Candidate in Bacteria and Archaea. Science Signaling, 2008, 1, pe39.	3.6	151
90	Role of EAL-Containing Proteins in Multicellular Behavior of Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2007, 189, 3613-3623.	2.2	94

#	Article	IF	CITATIONS
91	Pseudomonas aeruginosa cupA-encoded fimbriae expression is regulated by a GGDEF and EAL domain-dependent modulation of the intracellular level of cyclic diguanylate. Environmental Microbiology, 2007, 9, 2475-2485.	3.8	107
92	Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms. FEMS Microbiology Letters, 2007, 267, 200-206.	1.8	94
93	The role of c-di-GMP signaling in anAeromonas veroniibiovarsobriastrain. FEMS Microbiology Letters, 2007, 273, 172-179.	1.8	21
94	Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy. BMC Microbiology, 2007, 7, 70.	3.3	142
95	Cellulose Biosynthesis in Enterobacteriaceae. , 2007, , 107-122.		4
96	Cyclic di-GMP as a second messenger. Current Opinion in Microbiology, 2006, 9, 218-228.	5.1	313
97	Large chromosomal inversions occur in Pseudomonas aeruginosa clone C strains isolated from cystic fibrosis patients. FEMS Microbiology Letters, 2006, 150, 149-156.	1.8	12
98	Regulatory components at the csgDpromoter \tilde{A} ¢ \hat{A} € \hat{A} " additional roles for OmpR and integration host factor and role of the $5\tilde{A}$ ¢ \hat{A} € \hat{A} 2 untranslated region. FEMS Microbiology Letters, 2006, 261, 109-117.	1.8	24
99	ldentification of YhdA as a regulator of theEscherichia colicarbon storage regulation system. FEMS Microbiology Letters, 2006, 264, 232-237.	1.8	18
100	Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Molecular Microbiology, 2006, 60, 602-616.	2.5	180
101	ISPa20 advances the individual evolution of Pseudomonas aeruginosa clone C subclone C13 strains isolated from cystic fibrosis patients by insertional mutagenesis and genomic rearrangements. Archives of Microbiology, 2006, 185, 245-254.	2.2	34
102	Flagellin in combination with curli fimbriae elicits an immune response in the gastrointestinal epithelial cell line HT-29. Microbes and Infection, 2006, 8, 2027-2033.	1.9	16
103	Biofilm formation and the survival of Salmonella Typhimurium on parsley. International Journal of Food Microbiology, 2006, 109, 229-233.	4.7	136
104	The PilZ Domain Is a Receptor for the Second Messenger c-di-GMP. Journal of Biological Chemistry, 2006, 281, 30310-30314.	3.4	443
105	Worldwide distribution of Pseudomonas aeruginosa clone C strains in the aquatic environment and cystic fibrosis patients. Environmental Microbiology, 2005, 7, 1029-1038.	3.8	85
106	C-di-GMP: the dawning of a novel bacterial signalling system. Molecular Microbiology, 2005, 57, 629-639.	2.5	593
107	Proteome analysis reveals adaptation of Pseudomonas aeruginosa to the cystic fibrosis lung environment. Proteomics, 2005, 5, 3712-3721.	2,2	50
108	Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. Journal of Medical Microbiology, 2005, 54, 667-676.	1.8	314

#	Article	IF	Citations
109	Effect of Heat, Acidification, and Chlorination on Salmonella enterica Serovar Typhimurium Cells in a Biofilm Formed at the Air-Liquid Interface. Applied and Environmental Microbiology, 2005, 71, 1163-1168.	3.1	165
110	Phenotypic Convergence Mediated by GGDEF-Domain-Containing Proteins. Journal of Bacteriology, 2005, 187, 6816-6823.	2.2	76
111	Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. Journal of Medical Microbiology, 2005, 54, 1171-1182.	1.8	219
112	GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Molecular Microbiology, 2004, 53, 1123-1134.	2.5	834
113	Characterization of cellulose produced by Salmonella enterica serovar Typhimurium. Cellulose, 2004, 11, 413-418.	4.9	13
114	Complex regulation of csgD promoter activity by global regulatory proteins. Molecular Microbiology, 2004, 49, 639-654.	2.5	158
115	Impact of large chromosomal inversions on the adaptation and evolution of Pseudomonas aeruginosa chronically colonizing cystic fibrosis lungs. Molecular Microbiology, 2003, 47, 145-158.	2.5	100
116	The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. Research in Microbiology, 2003, 154, 659-667.	2.1	211
117	Occurrence and regulation of the multicellular morphotype in Salmonella serovars important in human disease. International Journal of Medical Microbiology, 2003, 293, 273-285.	3.6	149
118	Production of Cellulose and Curli Fimbriae by Members of the Family Enterobacteriaceae Isolated from the Human Gastrointestinal Tract. Infection and Immunity, 2003, 71, 4151-4158.	2.2	332
119	Dissection of the Genetic Pathway Leading to Multicellular Behaviour in <i>Salmonella enterica</i> Serotype Typhimurium and Other Enterobacteriaceae., 2003,, 231-261.		7
120	Molecular biology of cellulose production in bacteria. Research in Microbiology, 2002, 153, 205-212.	2.1	303
121	[5] Genetic and phenotypic analysis of multicellular behavior in salmonella typhimurium. Methods in Enzymology, 2001, 336, 48-59.	1.0	24
122	Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium. Environmental Microbiology, 2001, 3, 638-648.	3.8	191
123	The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Molecular Microbiology, 2001, 39, 1452-1463.	2.5	838
124	AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Molecular Microbiology, 2000, 36, 10-23.	2.5	373
125	Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene, 1999, 238, 417-425.	2.2	140
126	Differential genome analysis of bacteria by genomic subtractive hybridization and pulsed field gel electrophoresis. Electrophoresis, 1998, 19, 509-514.	2.4	22

#	Article	IF	CITATIONS
127	Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Molecular Microbiology, 1998, 28, 249-264.	2.5	418
128	Regulation of $\langle i \rangle$ Pseudomonas aeruginosa hemF $\langle i \rangle$ and $\langle i \rangle$ hemN $\langle i \rangle$ by the dual action of the redox response regulators Anr and Dnr. Molecular Microbiology, 1998, 29, 985-997.	2.5	80
129	Localization of denitrification genes on the chromosomal map of Pseudomonas aeruginosa. Microbiology (United Kingdom), 1998, 144, 441-448.	1.8	43
130	Two-dimensional Pulsed-field Gel Electrophoresis. , 1998, , 326-336.		0
131	One-dimensional Pulsed-field Gel Electrophoresis. , 1998, , 312-325.		O
132	Large genome rearrangements discovered by the detailed analysis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats 1 1Edited by J. Karn. Journal of Molecular Biology, 1997, 271, 386-404.	4.2	124
133	Macrorestriction Mapping and Analysis of Bacterial Genomes. , 1996, , 165-195.		9
134	Cloning, mapping and characterization of the Pseudomonas aeruginosa hem Lgene. Molecular Genetics and Genomics, 1995, 248, 375-380.	2.4	19
135	A physical genome map of the Burkholderia cepacia type strain. Molecular Microbiology, 1995, 17, 57-67.	2.5	95
136	Gradient of genomic diversity in the Pseudomonas aeruginosa chromosome. Molecular Microbiology, 1995, 17, 323-332.	2.5	49
137	Pulsed field gel electrophoresis of bacterial DNA isolated directly from patients' sputa. Nucleic Acids Research, 1995, 23, 722-725.	14.5	8
138	Bacterial genome mapping. Journal of Biotechnology, 1994, 35, 155-164.	3.8	15
139	Comparative mapping of thePseudomonas aeruginosa PAO genome with rare-cutter linking clones or two-dimensional pulsed-field gel electrophoresis protocols. Electrophoresis, 1993, 14, 283-289.	2.4	12
140	Physical genome analysis of bacteria. Electrophoresis, 1992, 13, 626-631.	2.4	52
141	Pulsed-field gel electrophoresis analysis of aPseudomonas aeruginosa pathovar. Electrophoresis, 1992, 13, 646-648.	2.4	21
142	APacl/Swal map of thePseudomonas aeruginosa PAO chromosome. Electrophoresis, 1992, 13, 649-651.	2.4	9
143	The impact of two-dimensional pulsed-field gel electrophoresis techniques for the consistent and complete mapping of bacterial genomes: refined physical map ofPseudomonas aeruginosaPAO. Nucleic Acids Research, 1991, 19, 3199-3206.	14.5	73
144	Regulatory Networks inPseudomonas aeruginosa: Role of Cyclic-di(3′,5′)-Guanylic Acid. , 0, , 195-214.		0

#	Article	IF	CITATIONS
145	Hierarchical Control of rdar Morphotype Development of <i>Salmonella enterica</i> by Cyclic Di-GMP., 0,, 137-155.		O