Philip D Greenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9006353/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reconstitution of Cellular Immunity against Cytomegalovirus in Recipients of Allogeneic Bone Marrow by Transfer of T-Cell Clones from the Donor. New England Journal of Medicine, 1995, 333, 1038-1044.	27.0	1,756
2	Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Medicine, 1999, 5, 677-685.	30.7	1,033
3	Multiple early factors anticipate post-acute COVID-19 sequelae. Cell, 2022, 185, 881-895.e20.	28.9	605
4	Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends in Immunology, 2014, 35, 51-60.	6.8	513
5	Obstacles Posed by the Tumor Microenvironment to TÂcell Activity: A Case for Synergistic Therapies. Cancer Cell, 2017, 31, 311-325.	16.8	502
6	Tumor-Specific T Cell Dysfunction Is a Dynamic Antigen-Driven Differentiation Program Initiated Early during Tumorigenesis. Immunity, 2016, 45, 389-401.	14.3	496
7	Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-19. Cell, 2020, 183, 1479-1495.e20.	28.9	449
8	Melanocyte Destruction after Antigen-Specific Immunotherapy of Melanoma. Journal of Experimental Medicine, 2000, 192, 1637-1644.	8.5	414
9	Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood, 2007, 110, 201-210.	1.4	383
10	The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. Journal of Immunological Methods, 1990, 128, 189-201.	1.4	322
11	Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood, 2007, 109, 2331-2338.	1.4	318
12	Transferred WT1-Reactive CD8 ⁺ T Cells Can Mediate Antileukemic Activity and Persist in Post-Transplant Patients. Science Translational Medicine, 2013, 5, 174ra27.	12.4	280
13	Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut, 2014, 63, 1769-1781.	12.1	272
14	Principles for Adoptive T Cell Therapy of Human Viral Diseases. Annual Review of Immunology, 1995, 13, 545-586.	21.8	235
15	T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nature Medicine, 2019, 25, 1064-1072.	30.7	226
16	Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors. Nature Medicine, 2006, 12, 335-341.	30.7	221
17	TCR contact residue hydrophobicity is a hallmark of immunogenic CD8 ⁺ T cell epitopes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1754-62.	7.1	200
18	T Cells Engineered against a Native Antigen Can Surmount Immunologic and Physical Barriers to Treat Pancreatic Ductal Adenocarcinoma, Cancer Cell, 2015, 28, 638-652	16.8	168

PHILIP D GREENBERG

#	Article	IF	CITATIONS
19	Rescued Tolerant CD8 T Cells Are Preprogrammed to Reestablish the Tolerant State. Science, 2012, 335, 723-727.	12.6	149
20	Restoration of CD28 Expression in CD28â^' CD8+ Memory Effector T Cells Reconstitutes Antigen-induced IL-2 Production. Journal of Experimental Medicine, 2003, 198, 947-955.	8.5	142
21	Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in in intrapancreatic CD8+ T cells. Journal of Experimental Medicine, 2020, 217, .	8.5	142
22	CD27 Expression Promotes Long-Term Survival of Functional Effector–Memory CD8+Cytotoxic T Lymphocytes in HIV-infected Patients. Journal of Experimental Medicine, 2004, 200, 1407-1417.	8.5	113
23	Human microRNA-27a* targets Prf1 and GzmB expression to regulate NK-cell cytotoxicity. Blood, 2011, 118, 5476-5486.	1.4	113
24	In vitro methods for generating CD8+ T-cell clones for immunotherapy from the naÃ ⁻ ve repertoire. Journal of Immunological Methods, 2006, 310, 40-52.	1.4	111
25	Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells. Nature Protocols, 2014, 9, 950-966.	12.0	109
26	Stromal reengineering to treat pancreas cancer. Carcinogenesis, 2014, 35, 1451-1460.	2.8	108
27	T-Cell Therapy Using Interleukin-21–Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression. Journal of Clinical Oncology, 2016, 34, 3787-3795.	1.6	98
28	CD8+ T Cell Tolerance to a Tumor-associated Antigen Is Maintained at the Level of Expansion Rather than Effector Function. Journal of Experimental Medicine, 2002, 195, 1407-1418.	8.5	96
29	Retinoic Acid as a Vaccine Adjuvant Enhances CD8 ⁺ T Cell Response and Mucosal Protection from Viral Challenge. Journal of Virology, 2011, 85, 8316-8327.	3.4	82
30	Integrated analysis of plasma and single immune cells uncovers metabolic changes in individuals with COVID-19. Nature Biotechnology, 2022, 40, 110-120.	17.5	81
31	Combined IL-21–primed polyclonal CTL plus CTLA4 blockade controls refractory metastatic melanoma in a patient. Journal of Experimental Medicine, 2016, 213, 1133-1139.	8.5	78
32	Abrogating Cbl-b in effector CD8+ T cells improves the efficacy of adoptive therapy of leukemia in mice. Journal of Clinical Investigation, 2010, 120, 3722-3734.	8.2	74
33	Tracking the fate and origin of clinically relevant adoptively transferred CD8 ⁺ T cells in vivo. Science Immunology, 2017, 2, .	11.9	68
34	Pitfalls of vaccinations with WT1-, Proteinase3- and MUC1-derived peptides in combination with MontanidelSA51 and CpG7909. Cancer Immunology, Immunotherapy, 2011, 60, 161-171.	4.2	67
35	Reâ€adapting T cells for cancer therapy: from mouse models to clinical trials. Immunological Reviews, 2014, 257, 145-164.	6.0	67
36	Cyclin-A1 represents a new immunogenic targetable antigen expressed in acute myeloid leukemia stem cells with characteristics of a cancer-testis antigen. Blood, 2012, 119, 5492-5501.	1.4	66

PHILIP D GREENBERG

#	Article	IF	CITATIONS
37	MicroRNA-150 regulates the cytotoxicity of natural killers by targeting perforin-1. Journal of Allergy and Clinical Immunology, 2014, 134, 195-203.e4.	2.9	62
38	Hepatitis C Virus Immune Escape via Exploitation of a Hole in the T Cell Repertoire. Journal of Immunology, 2008, 181, 6435-6446.	0.8	61
39	Use of CD137 to study the full repertoire of CD8+ T cells without the need to know epitope specificities. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 1043-1049.	1.5	58
40	Priming CD8+ T cells with dendritic cells matured using TLR4 and TLR7/8 ligands together enhances generation of CD8+ T cells retaining CD28. Blood, 2011, 117, 6542-6551.	1.4	54
41	SHP-1 in T Cells Limits the Production of CD8 Effector Cells without Impacting the Formation of Long-Lived Central Memory Cells. Journal of Immunology, 2010, 185, 3256-3267.	0.8	53
42	Immune Responses Elicited by Recombinant Vaccinia-Human Immunodeficiency Virus (HIV) Envelope and HIV Envelope Protein: Analysis of the Durability of Responses and Effect of Repeated Boosting. Journal of Infectious Diseases, 1994, 169, 41-47.	4.0	51
43	Structural features of T cell receptor variable regions that enhance domain stability and enable expression as single-chain $\hat{VI} \pm \hat{VI}^2$ fragments. Molecular Immunology, 2009, 46, 902-916.	2.2	51
44	Peripheral CD8+ T Cell Tolerance to Self-Proteins IsÂRegulated Proximally at the T Cell Receptor. Immunity, 2008, 28, 662-674.	14.3	44
45	HIV-specific CD8+ T cells from HIV+ individuals receiving HAART can be expanded ex vivo to augment systemic and mucosal immunity in vivo. Blood, 2011, 117, 5391-5402.	1.4	44
46	Molecular Pathways: Myeloid Complicity in Cancer. Clinical Cancer Research, 2014, 20, 5157-5170.	7.0	44
47	A CD200R-CD28 fusion protein appropriates an inhibitory signal to enhance T-cell function and therapy of murine leukemia. Blood, 2017, 130, 2410-2419.	1.4	44
48	Durable Adoptive Immunotherapy for Leukemia Produced by Manipulation of Multiple Regulatory Pathways of CD8+ T-Cell Tolerance. Cancer Research, 2013, 73, 605-616.	0.9	41
49	Adoptive Immunotherapy of Disseminated Leukemia With TCR-transduced, CD8+ T Cells Expressing a Known Endogenous TCR. Molecular Therapy, 2009, 17, 742-749.	8.2	39
50	Primed tumor-reactive multifunctional CD62L+ human CD8+ T cells for immunotherapy. Cancer Immunology, Immunotherapy, 2011, 60, 173-186.	4.2	37
51	A Fas-4-1BB fusion protein converts a death to a pro-survival signal and enhances T cell therapy. Journal of Experimental Medicine, 2020, 217, .	8.5	37
52	Selective Delivery of Augmented IL-2 Receptor Signals to Responding CD8+ T Cells Increases the Size of the Acute Antiviral Response and of the Resulting Memory T Cell Pool. Journal of Immunology, 2002, 169, 4990-4997.	0.8	35
53	New Strategies in Engineering T-cell Receptor Gene-Modified T cells to More Effectively Target Malignancies. Clinical Cancer Research, 2015, 21, 5191-5197.	7.0	29
54	Ontogeny of Recognition Specificity and Functionality for the Broadly Neutralizing Anti-HIV Antibody 4E10. PLoS Pathogens, 2014, 10, e1004403.	4.7	27

PHILIP D GREENBERG

#	Article	IF	CITATIONS
55	Engineered Adoptive T-cell Therapy Prolongs Survival in a Preclinical Model of Advanced-Stage Ovarian Cancer. Cancer Immunology Research, 2019, 7, 1412-1425.	3.4	26
56	Induction of Tolerance in CD8+ T Cells to a Transgenic Autoantigen Expressed in the Liver Does Not Require Cross-Presentation. Journal of Immunology, 2007, 178, 6849-6860.	0.8	24
57	Cell-Intrinsic Abrogation of TGF-Î ² Signaling Delays but Does Not Prevent Dysfunction of Self/Tumor-Specific CD8 T Cells in a Murine Model of Autochthonous Prostate Cancer. Journal of Immunology, 2012, 189, 3936-3946.	0.8	22
58	Immunization against SIVmne in macaques using multigenic DNA vaccines. Journal of Medical Primatology, 1999, 28, 206-213.	0.6	19
59	Effect of Interleukin-2 on Biodistribution of Monoclonal Antibody in Tumor and Normal Tissues in Mice Bearing SL-2 Thymoma. Journal of the National Cancer Institute, 1992, 84, 109-113.	6.3	13
60	Targeting an alternate Wilms' tumor antigen 1 peptide bypasses immunoproteasome dependency. Science Translational Medicine, 2022, 14, eabg8070.	12.4	12
61	Engineering adoptive T cell therapy to co-opt Fas ligand-mediated death signaling in ovarian cancer enhances therapeutic efficacy. , 2022, 10, e003959.		10
62	Pancreatic Cancer: Planning Ahead for Metastatic Spread. Cancer Cell, 2016, 29, 774-776.	16.8	9
63	MicroRNA-150 modulates intracellular Ca 2+ levels in naÃ ⁻ ve CD8+ T cells by targeting TMEM20. Scientific Reports, 2017, 7, 2623.	3.3	9
64	Expression of Herpes Simplex Virus ICP47 and Human Cytomegalovirus US11 Prevents Recognition of Transgene Products by CD8+ Cytotoxic T Lymphocytes. Journal of Virology, 2000, 74, 4465-4473.	3.4	5
65	Development of a clinically relevant ovarian cancer model incorporating surgical cytoreduction to evaluate treatment of micro-metastatic disease. Gynecologic Oncology, 2021, 160, 427-437.	1.4	4
66	Ralph M. Steinman: A man, a microscope, a cell, and so much more. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20871-20872.	7.1	1
67	Adoptive Cellular Therapy for Follicular Lymphoma Using Genetically-Modified Autologous CD20-Specific T Cells Blood, 2007, 110, 499-499.	1.4	1
68	Genetic Modification of T Cell Clones to Improve the Safety and Efficacy of Adoptive T Cell Therapy. Novartis Foundation Symposium, 1994, 187, 212-228.	1.1	0
69	Mac Cheever (1944–2021): a tribute to a life of achievement and service. , 2022, 10, e004433.		0
70	A New Year, A New Initiative. Cancer Immunology Research, 2022, 10, 2-2.	3.4	0