
## Carsten Warneke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9005979/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Measurements of volatile organic compounds in the earth's atmosphere using<br>protonâ€ŧransferâ€ŧeaction mass spectrometry. Mass Spectrometry Reviews, 2007, 26, 223-257.                                                               | 5.4  | 1,017     |
| 2  | Global Air Pollution Crossroads over the Mediterranean. Science, 2002, 298, 794-799.                                                                                                                                                    | 12.6 | 920       |
| 3  | Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study<br>in 2002. Journal of Geophysical Research, 2005, 110, .                                                                             | 3.3  | 689       |
| 4  | Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. Geophysical Research Letters, 2008, 35, .                                                          | 4.0  | 388       |
| 5  | Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and<br>hydrogen cyanide. Geophysical Research Letters, 1999, 26, 1161-1164.                                                                 | 4.0  | 313       |
| 6  | Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry. International Journal of Mass Spectrometry, 2003, 223-224, 365-382.                                                       | 1.5  | 289       |
| 7  | Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in<br>April 2008. Geophysical Research Letters, 2009, 36, .                                                                           | 4.0  | 289       |
| 8  | Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences. Chemical Reviews, 2017, 117, 13187-13229.                                                                                                             | 47.7 | 282       |
| 9  | Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations. Atmospheric Chemistry and Physics, 2010, 10, 3405-3425.                                                          | 4.9  | 278       |
| 10 | Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmospheric Chemistry and Physics, 2011, 11, 1989-2013.                                                                                          | 4.9  | 266       |
| 11 | Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmospheric Chemistry and Physics, 2013, 13, 89-116.                                       | 4.9  | 266       |
| 12 | High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature, 2014, 514,<br>351-354.                                                                                                                            | 27.8 | 265       |
| 13 | Global budget of methanol: Constraints from atmospheric observations. Journal of Geophysical<br>Research, 2005, 110, .                                                                                                                  | 3.3  | 263       |
| 14 | Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol,<br>radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project. Atmospheric Chemistry and<br>Physics, 2011, 11, 2423-2453. | 4.9  | 259       |
| 15 | Chemical data quantify <i>Deepwater Horizon</i> hydrocarbon flow rate and environmental distribution. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20246-20253.                          | 7.1  | 258       |
| 16 | Determination of urban volatile organic compound emission ratios and comparison with an emissions<br>database. Journal of Geophysical Research, 2007, 112, .                                                                            | 3.3  | 254       |
| 17 | Validation of Atmospheric VOC Measurements by Proton-Transfer- Reaction Mass Spectrometry Using<br>a Gas-Chromatographic Preseparation Method. Environmental Science & Technology, 2003, 37,<br>2494-2501.                              | 10.0 | 248       |
| 18 | Acetone, methanol, and other partially oxidized volatile organic emissions from dead plant matter by<br>abiological processes: Significance for atmospheric HOxchemistry. Global Biogeochemical Cycles,<br>1999, 13, 9-17.              | 4.9  | 246       |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment. Atmospheric Chemistry and Physics, 2018, 18, 3299-3319.                   | 4.9 | 233       |
| 20 | Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. Journal of<br>Geophysical Research, 2009, 114, .                                                                                                        | 3.3 | 230       |
| 21 | Validation of proton transfer reaction-mass spectrometry (PTR-MS) measurements of gas-phase<br>organic compounds in the atmosphere during the New England Air Quality Study (NEAQS) in 2002.<br>Journal of Geophysical Research, 2003, 108, .    | 3.3 | 218       |
| 22 | Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States. Atmospheric Chemistry and Physics, 2010, 10, 11115-11130.                                                | 4.9 | 218       |
| 23 | Emission ratios of anthropogenic volatile organic compounds in northern midâ€latitude megacities:<br>Observations versus emission inventories in Los Angeles and Paris. Journal of Geophysical Research D:<br>Atmospheres, 2013, 118, 2041-2057. | 3.3 | 210       |
| 24 | A large and ubiquitous source of atmospheric formic acid. Atmospheric Chemistry and Physics, 2015, 15, 6283-6304.                                                                                                                                | 4.9 | 197       |
| 25 | Development of negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) for the measurement of gas-phase organic acids in the atmosphere. International Journal of Mass Spectrometry, 2008, 274, 48-55.                   | 1.5 | 193       |
| 26 | Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass. Geophysical<br>Research Letters, 2012, 39, .                                                                                                             | 4.0 | 189       |
| 27 | Multiyear trends in volatile organic compounds in Los Angeles, California: Five decades of decreasing emissions. Journal of Geophysical Research, 2012, 117, .                                                                                   | 3.3 | 183       |
| 28 | Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere. Journal of Geophysical Research, 2003, 108, .                                                                                                                       | 3.3 | 179       |
| 29 | Measurements of benzene and toluene in ambient air using proton-transfer-reaction mass spectrometry: calibration, humidity dependence, and field intercomparison. International Journal of Mass Spectrometry, 2001, 207, 167-182.                | 1.5 | 178       |
| 30 | Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US. Atmospheric Chemistry and Physics, 2015, 15, 13915-13938.                                           | 4.9 | 177       |
| 31 | Sources of particulate matter in the northeastern United States in summer: 1. Direct emissions and secondary formation of organic matter in urban plumes. Journal of Geophysical Research, 2008, 113, .                                          | 3.3 | 173       |
| 32 | An important contribution to springtime Arctic aerosol from biomass burning in Russia. Geophysical<br>Research Letters, 2010, 37, .                                                                                                              | 4.0 | 172       |
| 33 | Evaluation of a New Reagent-Ion Source and Focusing Ion–Molecule Reactor for Use in<br>Proton-Transfer-Reaction Mass Spectrometry. Analytical Chemistry, 2018, 90, 12011-12018.                                                                  | 6.5 | 168       |
| 34 | lsocyanic acid in the atmosphere and its possible link to smoke-related health effects. Proceedings of<br>the National Academy of Sciences of the United States of America, 2011, 108, 8966-8971.                                                | 7.1 | 166       |
| 35 | Volatile organic compounds composition of merged and aged forest fire plumes from Alaska and western Canada. Journal of Geophysical Research, 2006, 111, n/a-n/a.                                                                                | 3.3 | 165       |
| 36 | Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern<br>Marcellus shale gas production regions. Journal of Geophysical Research D: Atmospheres, 2015, 120,<br>2119-2139.                               | 3.3 | 164       |

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill. Science, 2011, 331, 1295-1299.                                                                                                                                             | 12.6 | 162       |
| 38 | Measurements of gasâ€phase inorganic and organic acids from biomass fires by negativeâ€ion<br>protonâ€transfer chemicalâ€ionization mass spectrometry. Journal of Geophysical Research, 2010, 115, .                                                | 3.3  | 161       |
| 39 | New constraints on terrestrial and oceanic sources of atmospheric methanol. Atmospheric Chemistry and Physics, 2008, 8, 6887-6905.                                                                                                                  | 4.9  | 160       |
| 40 | Understanding high wintertime ozone pollution events in an oil- and natural gas-producing region of the western US. Atmospheric Chemistry and Physics, 2015, 15, 411-429.                                                                           | 4.9  | 154       |
| 41 | Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer<br>chemical-ionization mass spectrometry (NI-PT-CIMS): application to biomass burning emissions.<br>Atmospheric Measurement Techniques, 2010, 3, 981-990.      | 3.1  | 152       |
| 42 | Title is missing!. Journal of Atmospheric Chemistry, 2001, 38, 133-166.                                                                                                                                                                             | 3.2  | 145       |
| 43 | Comparison of daytime and nighttime oxidation of biogenic and anthropogenic VOCs along the New<br>England coast in summer during New England Air Quality Study 2002. Journal of Geophysical<br>Research, 2004, 109, .                               | 3.3  | 144       |
| 44 | Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO:<br>implications for assessing treatments of secondary organic aerosols. Atmospheric Chemistry and<br>Physics, 2009, 9, 6191-6215.                   | 4.9  | 138       |
| 45 | Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area. Atmospheric Chemistry and Physics, 2016, 16, 7411-7433.                                              | 4.9  | 137       |
| 46 | Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area. Atmospheric Chemistry and Physics, 2010, 10, 2353-2375.                                                                                       | 4.9  | 131       |
| 47 | Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol. Atmospheric Chemistry and Physics, 2009, 9, 3027-3042.                                      | 4.9  | 128       |
| 48 | Biomass-burning particle measurements: Characteristic composition and chemical processing. Journal of Geophysical Research, 2004, 109, .                                                                                                            | 3.3  | 127       |
| 49 | Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution. Atmospheric Chemistry and Physics, 2011, 11, 2399-2421. | 4.9  | 127       |
| 50 | Formaldehyde production from isoprene oxidation<br>acrossÂNO <sub><i>x</i></sub> Âregimes.<br>Atmospheric Chemistry and Physics, 2016, 16, 2597-2610.                                                                                               | 4.9  | 124       |
| 51 | VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS.<br>International Journal of Mass Spectrometry, 2011, 303, 6-14.                                                                                    | 1.5  | 123       |
| 52 | Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico<br>City in March 2006 during the MILAGRO study. Atmospheric Chemistry and Physics, 2009, 9, 3425-3442.                                        | 4.9  | 114       |
| 53 | Title is missing!. Journal of Atmospheric Chemistry, 2001, 38, 167-185.                                                                                                                                                                             | 3.2  | 111       |
| 54 | Ozone variability and halogen oxidation within the Arctic and sub-Arctic springtime boundary layer.<br>Atmospheric Chemistry and Physics, 2010, 10, 10223-10236.                                                                                    | 4.9  | 104       |

| #  | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX. Atmospheric Chemistry and Physics, 2018, 18, 2929-2948.                                                                                       | 4.9 | 103       |
| 56 | Volatile chemical product emissions enhance ozone and modulate urban chemistry. Proceedings of the United States of America, 2021, 118, .                                                                                                                                       | 7.1 | 103       |
| 57 | High- and low-temperature pyrolysis profiles describe volatile organic compound emissions from western US wildfire fuels. Atmospheric Chemistry and Physics, 2018, 18, 9263-9281.                                                                                               | 4.9 | 102       |
| 58 | Calculation of the sensitivity of proton-transfer-reaction mass spectrometry (PTR-MS) for organic trace gases using molecular properties. International Journal of Mass Spectrometry, 2017, 421, 71-94.                                                                         | 1.5 | 101       |
| 59 | Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah. Atmospheric Chemistry and Physics, 2013, 13, 8955-8971.                                                                            | 4.9 | 100       |
| 60 | Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah:<br>oil and gas well pad emissions compared to ambient air composition. Atmospheric Chemistry and<br>Physics, 2014, 14, 10977-10988.                                        | 4.9 | 98        |
| 61 | Airborne and groundâ€based observations of a weekend effect in ozone, precursors, and oxidation products in the California South Coast Air Basin. Journal of Geophysical Research, 2012, 117, .                                                                                 | 3.3 | 97        |
| 62 | Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. Atmospheric Chemistry and Physics, 2008, 8, 2007-2025.                                                                                                                      | 4.9 | 94        |
| 63 | Disjunct eddy covariance technique for trace gas flux measurements. Geophysical Research Letters, 2001, 28, 3139-3142.                                                                                                                                                          | 4.0 | 93        |
| 64 | OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass<br>burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary<br>NMOG formation. Atmospheric Chemistry and Physics, 2019, 19, 14875-14899. | 4.9 | 92        |
| 65 | Contribution of human-related sources to indoor volatile organic compounds in a university classroom. Indoor Air, 2016, 26, 925-938.                                                                                                                                            | 4.3 | 91        |
| 66 | Chemical composition of air masses transported from Asia to the U.S. West Coast during ITCT 2K2:<br>Fossil fuel combustion versus biomass-burning signatures. Journal of Geophysical Research, 2004, 109,                                                                       | 3.3 | 89        |
| 67 | Biogenic emission measurement and inventories determination of biogenic emissions in the eastern<br>United States and Texas and comparison with biogenic emission inventories. Journal of Geophysical<br>Research, 2010, 115, .                                                 | 3.3 | 89        |
| 68 | Evidence of rapid production of organic acids in an urban air mass. Geophysical Research Letters, 2011,<br>38, n/a-n/a.                                                                                                                                                         | 4.0 | 89        |
| 69 | The impact of monsoon outflow from India and Southeast Asia in the upper troposphere over the eastern Mediterranean. Atmospheric Chemistry and Physics, 2003, 3, 1589-1608.                                                                                                     | 4.9 | 86        |
| 70 | Evaluations of NO <sub>x</sub> and highly reactive VOC emission<br>inventories in Texas and their implications for ozone plume simulations during the Texas Air Quality<br>Study 2006. Atmospheric Chemistry and Physics, 2011, 11, 11361-11386.                                | 4.9 | 85        |
| 71 | Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter<br>Ozone Study (UBWOS) 2014. Atmospheric Chemistry and Physics, 2016, 16, 2139-2153.                                                                                         | 4.9 | 85        |
| 72 | Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes.<br>Atmospheric Chemistry and Physics, 2003, 3, 739-745.                                                                                                                        | 4.9 | 84        |

| #  | Article                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Development of proton-transfer ion trap-mass spectrometry: on-line detection and identification of volatile organic compounds in air. Journal of the American Society for Mass Spectrometry, 2005, 16, 1316-1324.                                                      | 2.8  | 84        |
| 74 | Biomass burning and anthropogenic sources of CO over New England in the summer 2004. Journal of<br>Geophysical Research, 2006, 111, .                                                                                                                                  | 3.3  | 83        |
| 75 | Gas-phase chemical characteristics of Asian emission plumes observed during ITCT 2K2 over the<br>eastern North Pacific Ocean. Journal of Geophysical Research, 2004, 109, .                                                                                            | 3.3  | 80        |
| 76 | Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence,<br>inter-comparison and initial results. Atmospheric Measurement Techniques, 2011, 4, 2345-2358.                                                                                    | 3.1  | 80        |
| 77 | An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas:<br>NO <sub>x</sub> and VOC Control as Mitigation Strategies. Geophysical Research Letters, 2019, 46,<br>4971-4979.                                                           | 4.0  | 80        |
| 78 | Air quality implications of the <i>Deepwater Horizon</i> oil spill. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20280-20285.                                                                                           | 7.1  | 79        |
| 79 | A high-resolution time-of-flight chemical ionization mass spectrometer utilizing hydronium ions<br>(H& t;sub>30 <sup>+</sup> ToF-CIMS) for<br>measurements of volatile organic compounds in the atmosphere. Atmospheric Measurement<br>Techniques. 2016. 9. 2735-2752. | 3.1  | 79        |
| 80 | Emissions of nitrogenâ€containing organic compounds from the burning of herbaceous and arboraceous biomass: Fuel composition dependence and the variability of commonly used nitrile tracers. Geophysical Research Letters, 2016, 43, 9903-9912.                       | 4.0  | 79        |
| 81 | Anthropogenic enhancements to production of highly oxygenated molecules from autoxidation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6641-6646.                                                                   | 7.1  | 78        |
| 82 | A Measurement of Total Reactive Nitrogen, NO <sub><i>y</i></sub> , together with NO <sub>2</sub> ,<br>NO, and O <sub>3</sub> via Cavity Ring-down Spectroscopy. Environmental Science & Technology,<br>2014, 48, 9609-9615.                                            | 10.0 | 75        |
| 83 | Quantifying Methane and Ethane Emissions to the Atmosphere From Central and Western U.S. Oil and<br>Natural Gas Production Regions. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7725-7740.                                                              | 3.3  | 74        |
| 84 | Proton transfer reaction mass spectrometry (PTR-MS): propanol in human breath. International<br>Journal of Mass Spectrometry and Ion Processes, 1996, 154, 61-70.                                                                                                      | 1.8  | 73        |
| 85 | Improved detection limit of the proton-transfer reaction mass spectrometer: on-line monitoring of volatile organic compounds at mixing ratios of a few pptv. Rapid Communications in Mass Spectrometry, 1998, 12, 871-875.                                             | 1.5  | 72        |
| 86 | Diurnal Variability and Emission Pattern of Decamethylcyclopentasiloxane (D <sub>5</sub> ) from the<br>Application of Personal Care Products in Two North American Cities. Environmental Science &<br>Technology, 2018, 52, 5610-5618.                                 | 10.0 | 72        |
| 87 | Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in<br>Biomass-Burning Emissions. Environmental Science & Technology, 2020, 54, 8568-8579.                                                                                          | 10.0 | 72        |
| 88 | Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry.<br>Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 270-278.                                                                                       | 3.9  | 70        |
| 89 | Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns. Atmospheric Chemistry and Physics, 2011, 11, 7561-7582.                                                                                             | 4.9  | 70        |
| 90 | An evaluation of realâ€ŧime air quality forecasts and their urban emissions over eastern Texas during<br>the summer of 2006 Second Texas Air Quality Study field study. Journal of Geophysical Research, 2009,<br>114, .                                               | 3.3  | 69        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Nighttime Chemical Transformation in Biomass Burning Plumes: A Box Model Analysis Initialized with<br>Aircraft Observations. Environmental Science & Technology, 2019, 53, 2529-2538.                                                                                                                                                                           | 10.0 | 68        |
| 92  | PTR-MS real time monitoring of the emission of volatile organic compounds during postharvest aging of berryfruit. Postharvest Biology and Technology, 1999, 17, 143-151.                                                                                                                                                                                        | 6.0  | 67        |
| 93  | Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions.<br>Atmospheric Chemistry and Physics, 2019, 19, 12797-12809.                                                                                                                                                                                                    | 4.9  | 67        |
| 94  | The primary and recycling sources of OH during the NACHTTâ€2011 campaign: HONO as an important OH primary source in the wintertime. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6886-6896.                                                                                                                                                       | 3.3  | 66        |
| 95  | Modeling Ozone in the Eastern U.S. using a Fuel-Based Mobile Source Emissions Inventory.<br>Environmental Science & Technology, 2018, 52, 7360-7370.                                                                                                                                                                                                            | 10.0 | 64        |
| 96  | The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations. Atmospheric Chemistry and Physics, 2015, 15, 6721-6744.                                                                                                                                                                                                         | 4.9  | 62        |
| 97  | Synthesis of the Southeast Atmosphere Studies: Investigating Fundamental Atmospheric Chemistry Questions. Bulletin of the American Meteorological Society, 2018, 99, 547-567.                                                                                                                                                                                   | 3.3  | 62        |
| 98  | Chemical characteristics assigned to trajectory clusters during the MINOS campaign. Atmospheric Chemistry and Physics, 2003, 3, 459-468.                                                                                                                                                                                                                        | 4.9  | 61        |
| 99  | Development and validation of a portable gas phase standard generation and calibration system for volatile organic compounds. Atmospheric Measurement Techniques, 2010, 3, 683-691.                                                                                                                                                                             | 3.1  | 61        |
| 100 | Online Volatile Organic Compound Measurements Using a Newly Developed Proton-Transfer Ion-Trap<br>Mass Spectrometry Instrument during New England Air Quality StudyIntercontinental Transport and<br>Chemical Transformation 2004:Â Performance, Intercomparison, and Compound Identification.<br>Environmental Science & amp; Technology, 2005, 39, 5390-5397. | 10.0 | 60        |
| 101 | Identifying Volatile Chemical Product Tracer Compounds in U.S. Cities. Environmental Science &<br>Technology, 2021, 55, 188-199.                                                                                                                                                                                                                                | 10.0 | 60        |
| 102 | Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. Atmospheric Chemistry and Physics, 2021, 21, 11201-11224.                                                                                                                                                                         | 4.9  | 60        |
| 103 | Emissions of organic carbon and methane from petroleum and dairy operations in California's San<br>Joaquin Valley. Atmospheric Chemistry and Physics, 2014, 14, 4955-4978.                                                                                                                                                                                      | 4.9  | 59        |
| 104 | Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic<br>compounds at volume mixing ratios of a few pptv. Plasma Sources Science and Technology, 1999, 8,<br>332-336.                                                                                                                                                     | 3.1  | 58        |
| 105 | Senescing grass crops as regional sources of reactive volatile organic compounds. Journal of<br>Geophysical Research, 2005, 110, .                                                                                                                                                                                                                              | 3.3  | 58        |
| 106 | Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013. Atmospheric Measurement Techniques, 2016, 9, 3063-3093.                                                                                                                                                                           | 3.1  | 58        |
| 107 | Airborne Measurements of Ethene from Industrial Sources Using Laser Photo-Acoustic Spectroscopy.<br>Environmental Science & Technology, 2009, 43, 2437-2442.                                                                                                                                                                                                    | 10.0 | 57        |
| 108 | Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region. Atmospheric Chemistry and Physics, 2015, 15, 1975-1993.                                                                                                                                                                                                | 4.9  | 57        |

| #   | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Observations Confirm that Volatile Chemical Products Are a Major Source of Petrochemical Emissions in U.S. Cities. Environmental Science & amp; Technology, 2021, 55, 4332-4343.                                                                                 | 10.0 | 57        |
| 110 | Formaldehyde over the eastern Mediterranean during MINOS: Comparison of airborne in-situ measurements with 3D-model results. Atmospheric Chemistry and Physics, 2003, 3, 851-861.                                                                                | 4.9  | 56        |
| 111 | Airborne flux measurements of methane and volatile organic compounds over the Haynesville and<br>Marcellus shale gas production regions. Journal of Geophysical Research D: Atmospheres, 2015, 120,<br>6271-6289.                                                | 3.3  | 56        |
| 112 | Transition from high- to low-NOx control of night-time oxidation in the southeastern US. Nature Geoscience, 2017, 10, 490-495.                                                                                                                                   | 12.9 | 56        |
| 113 | Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation. Atmospheric Chemistry and Physics, 2015, 15, 7571-7583.                                                                                                    | 4.9  | 55        |
| 114 | Evolution of aerosol properties impacting visibility and direct climate forcing in an ammoniaâ€rich<br>urban environment. Journal of Geophysical Research, 2012, 117, .                                                                                          | 3.3  | 54        |
| 115 | Photochemical aging of volatile organic compounds in the Los Angeles basin: Weekdayâ€weekend effect.<br>Journal of Geophysical Research D: Atmospheres, 2013, 118, 5018-5028.                                                                                    | 3.3  | 54        |
| 116 | An improved, automated whole air sampler and gas chromatography mass spectrometry analysis<br>system for volatile organic compounds in the atmosphere. Atmospheric Measurement Techniques,<br>2017, 10, 291-313.                                                 | 3.1  | 54        |
| 117 | Title is missing!. Journal of Atmospheric Chemistry, 2001, 38, 115-132.                                                                                                                                                                                          | 3.2  | 53        |
| 118 | Emissions of volatile organic compounds (VOCs) from concentrated animal feeding operations<br>(CAFOs): chemical compositions and separation of sources. Atmospheric Chemistry and Physics, 2017,<br>17, 4945-4956.                                               | 4.9  | 53        |
| 119 | Satellite isoprene retrievals constrain emissions and atmospheric oxidation. Nature, 2020, 585, 225-233.                                                                                                                                                         | 27.8 | 53        |
| 120 | Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere. Atmospheric Chemistry and Physics, 2009, 9, 2061-2074.                                                                                     | 4.9  | 52        |
| 121 | Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer:<br>aircraft vertical profiles in Houston, TX. Atmospheric Chemistry and Physics, 2013, 13, 11317-11337.                                                               | 4.9  | 51        |
| 122 | In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United<br>States during SENEX and SEAC <sup>4</sup> RS: observations of a modest<br>aerosol enhancement aloft. Atmospheric Chemistry and Physics, 2015, 15, 7085-7102. | 4.9  | 50        |
| 123 | Enhanced formation of isopreneâ€derived organic aerosol in sulfurâ€rich power plant plumes during<br>Southeast Nexus. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,137.                                                                         | 3.3  | 50        |
| 124 | Fine aerosol bulk composition measured on WP-3D research aircraft in vicinity of the Northeastern<br>United States – results from NEAQS. Atmospheric Chemistry and Physics, 2007, 7, 3231-3247.                                                                  | 4.9  | 49        |
| 125 | Measurements of PANs during the New England Air Quality Study 2002. Journal of Geophysical Research, 2007, 112, .                                                                                                                                                | 3.3  | 49        |
| 126 | Sources of particulate matter in the northeastern United States in summer: 2. Evolution of chemical and microphysical properties. Journal of Geophysical Research, 2008, 113, .                                                                                  | 3.3  | 48        |

| #   | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Evaluation of NO <sup>+</sup> reagent ion chemistry for online<br>measurements of atmospheric volatile organic compounds. Atmospheric Measurement Techniques,<br>2016, 9, 2909-2925.                                                     | 3.1  | 48        |
| 128 | Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9849-9861.                  | 3.3  | 48        |
| 129 | Secondary organic aerosol (SOA) yields from NO <sub>3</sub> radical +<br>isoprene based on nighttime aircraft power plant plume transects. Atmospheric Chemistry and<br>Physics, 2018, 18, 11663-11682.                                  | 4.9  | 47        |
| 130 | Mass Spectral Analysis of Organic Aerosol Formed Downwind of the Deepwater Horizon Oil Spill:<br>Field Studies and Laboratory Confirmations. Environmental Science & Technology, 2012, 46,<br>8025-8034.                                 | 10.0 | 45        |
| 131 | The nitrogen budget of laboratory-simulated western US wildfires during the FIREX 2016 Fire Lab<br>study. Atmospheric Chemistry and Physics, 2020, 20, 8807-8826.                                                                        | 4.9  | 45        |
| 132 | Ozone chemistry in western U.S. wildfire plumes. Science Advances, 2021, 7, eabl3648.                                                                                                                                                    | 10.3 | 45        |
| 133 | Characterization of NO <sub><i>x</i></sub> , SO <sub>2</sub> , ethene, and propene from industrial emission sources in Houston, Texas. Journal of Geophysical Research, 2010, 115, .                                                     | 3.3  | 44        |
| 134 | Emissions of C <sub>6</sub> –C <sub>8</sub> aromatic compounds in the United States: Constraints from tall tower and aircraft measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 826-842.                          | 3.3  | 44        |
| 135 | Observations of VOC emissions and photochemical products over US oil- and gas-producing regions<br>using high-resolution<br>H <sub>3</sub> O <sup>+</sup> CIMS<br>(PTR-ToF-MS). Atmospheric Measurement Techniques. 2017. 10. 2941-2968. | 3.1  | 44        |
| 136 | Photochemical Cloud Processing of Primary Wildfire Emissions as a Potential Source of Secondary<br>Organic Aerosol. Environmental Science & Technology, 2018, 52, 11027-11037.                                                           | 10.0 | 44        |
| 137 | Urban Oxidation Flow Reactor Measurements Reveal Significant Secondary Organic Aerosol<br>Contributions from Volatile Emissions of Emerging Importance. Environmental Science &<br>Technology, 2020, 54, 714-725.                        | 10.0 | 44        |
| 138 | Chemistry of Volatile Organic Compounds in the Los Angeles Basin: Formation of Oxygenated<br>Compounds and Determination of Emission Ratios. Journal of Geophysical Research D: Atmospheres,<br>2018, 123, 2298-2319.                    | 3.3  | 43        |
| 139 | Mixing between a stratospheric intrusion and a biomass burning plume. Atmospheric Chemistry and Physics, 2007, 7, 4229-4235.                                                                                                             | 4.9  | 42        |
| 140 | Interpretation of volatile organic compound measurements by proton-transfer-reaction mass<br>spectrometry over the deepwater horizon oil spill. International Journal of Mass Spectrometry, 2014,<br>358, 43-48.                         | 1.5  | 42        |
| 141 | Emissions and photochemistry of oxygenated VOCs in urban plumes in the Northeastern United States.<br>Atmospheric Chemistry and Physics, 2011, 11, 7081-7096.                                                                            | 4.9  | 41        |
| 142 | Increasing atmospheric burden of ethanol in the United States. Geophysical Research Letters, 2012, 39, .                                                                                                                                 | 4.0  | 41        |
| 143 | Biomass-burning-derived particles from a wide variety of fuels – Part 2: Effects of photochemical aging on particle optical and chemical properties. Atmospheric Chemistry and Physics, 2020, 20, 8511-8532.                             | 4.9  | 41        |
| 144 | Cluster Analysis of the Organic Peaks in Bulk Mass Spectra Obtained During the 2002 New England Air<br>Quality Study with an Aerodyne Aerosol Mass Spectrometer. Atmospheric Chemistry and Physics, 2006,<br>6, 5649-5666.               | 4.9  | 39        |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions. Atmospheric Chemistry and Physics, 2012, 12, 5897-5912.                                        | 4.9  | 39        |
| 146 | Inter-comparison between airborne measurements of methanol, acetonitrile and acetone using two<br>differently configured PTR-MS instruments. International Journal of Mass Spectrometry, 2004, 239,<br>129-137.              | 1.5  | 38        |
| 147 | Laboratory Studies on Secondary Organic Aerosol Formation from Crude Oil Vapors. Environmental<br>Science & Technology, 2013, 47, 12566-12574.                                                                               | 10.0 | 38        |
| 148 | Chemistry of Volatile Organic Compounds in the Los Angeles basin: Nighttime Removal of Alkenes and Determination of Emission Ratios. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,843.                      | 3.3  | 37        |
| 149 | Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor.<br>Atmospheric Chemistry and Physics, 2014, 14, 2555-2570.                                                               | 4.9  | 36        |
| 150 | Southeast Atmosphere Studies: learning from model-observation syntheses. Atmospheric Chemistry and Physics, 2018, 18, 2615-2651.                                                                                             | 4.9  | 36        |
| 151 | Measurement of Aerosol Organic Compounds Using a Novel Collection/Thermal-Desorption PTR-ITMS<br>Instrument. Aerosol Science and Technology, 2009, 43, 486-501.                                                              | 3.1  | 34        |
| 152 | WRF-Chem simulation of NOx and O3 in the L.A. basin during CalNex-2010. Atmospheric Environment, 2013, 81, 421-432.                                                                                                          | 4.1  | 34        |
| 153 | New insights into atmospheric sources and sinks of isocyanic acid, HNCO, from recent urban and regional observations. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1060-1072.                                  | 3.3  | 34        |
| 154 | Low temperatures enhance organic nitrate formation: evidence from observations in the 2012 Uintah<br>Basin Winter Ozone Study. Atmospheric Chemistry and Physics, 2014, 14, 12441-12454.                                     | 4.9  | 34        |
| 155 | Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California. Geoscientific Model Development, 2016, 9, 1959-1976.                                        | 3.6  | 34        |
| 156 | Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. Atmospheric Chemistry and Physics, 2021, 21, 16293-16317.                                    | 4.9  | 34        |
| 157 | Radicals in the marine boundary layer during NEAQS 2004: a model study of day-time and night-time sources and sinks. Atmospheric Chemistry and Physics, 2009, 9, 3075-3093.                                                  | 4.9  | 33        |
| 158 | Photochemical aging of volatile organic compounds associated with oil and natural gas extraction in the Uintah Basin, UT, during a wintertime ozone formation event. Atmospheric Chemistry and Physics, 2015, 15, 5727-5741. | 4.9  | 33        |
| 159 | On the relationship between acetone and carbon monoxide in different air masses. Atmospheric Chemistry and Physics, 2003, 3, 1709-1723.                                                                                      | 4.9  | 32        |
| 160 | A study of organic nitrates formation in an urban plume using a Master Chemical Mechanism.<br>Atmospheric Environment, 2008, 42, 5771-5786.                                                                                  | 4.1  | 32        |
| 161 | On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America. Atmospheric Chemistry and Physics, 2019, 19, 9097-9123.                                                | 4.9  | 32        |
| 162 | Variability and Time of Day Dependence of Ozone Photochemistry in Western Wildfire Plumes.<br>Environmental Science & Technology, 2021, 55, 10280-10290.                                                                     | 10.0 | 31        |

| #   | Article                                                                                                                                                                                                                                                | IF         | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 163 | Volatile organic compound emissions from switchgrass cultivars used as biofuel crops. Atmospheric Environment, 2011, 45, 3333-3337.                                                                                                                    | 4.1        | 30        |
| 164 | Ethene, propene, butene and isoprene emissions from a ponderosa pine forest measured by relaxed eddy accumulation. Atmospheric Chemistry and Physics, 2017, 17, 13417-13438.                                                                           | 4.9        | 30        |
| 165 | PTR-QMS versus PTR-TOF comparison in a region with oil and natural gas extraction industry in the Uintah Basin in 2013. Atmospheric Measurement Techniques, 2015, 8, 411-420.                                                                          | 3.1        | 29        |
| 166 | Primary emissions of glyoxal and methylglyoxal from laboratory measurements of open biomass burning. Atmospheric Chemistry and Physics, 2018, 18, 15451-15470.                                                                                         | 4.9        | 28        |
| 167 | Rapid cloud removal of dimethyl sulfide oxidation products limits SO <sub>2</sub> and cloud condensation nuclei production in the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .     | 7.1        | 28        |
| 168 | (NO <sub><i>x</i></sub> ), nitrous acid (HONO),<br>and nitrate<br>( <i>p</i> NO <sub>3</sub> <sup>â^'&amp;a<br/>from laboratory biomass burning during FIREX. Atmospheric Measurement Techniques, 2019, 12,</sup>                                      | amp;lt;/su | p>)       |
| 169 | 6303-6317.<br>Biomass burning nitrogen dioxide emissions derived from space with TROPOMI: methodology and validation. Atmospheric Measurement Techniques, 2021, 14, 7929-7957.                                                                         | 3.1        | 27        |
| 170 | Measurements of hydrogen sulfide (H <sub>2</sub> S) using PTR-MS:<br>calibration, humidity dependence, inter-comparison and results from field studies in an oil and gas<br>production region. Atmospheric Measurement Techniques, 2014, 7, 3597-3610. | 3.1        | 26        |
| 171 | Analysis of local-scale background concentrations of methane and other gas-phase species in the<br>Marcellus Shale. Elementa, 2017, 5, .                                                                                                               | 3.2        | 25        |
| 172 | Reactive nitrogen partitioning and its relationship to winter ozone events in Utah. Atmospheric<br>Chemistry and Physics, 2016, 16, 573-583.                                                                                                           | 4.9        | 24        |
| 173 | Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications. Atmospheric Chemistry and Physics, 2021, 21, 6005-6022.                                                    | 4.9        | 24        |
| 174 | Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global<br>Environments and Air Quality experiment (FIREX-AQ). Atmospheric Chemistry and Physics, 2021, 21,<br>18319-18331.                                       | 4.9        | 24        |
| 175 | Two additional advantages of proton-transfer ion trap mass spectrometry. Rapid Communications in<br>Mass Spectrometry, 2004, 18, 133-134.                                                                                                              | 1.5        | 23        |
| 176 | Quantifying Methane and Ozone Precursor Emissions from Oil and Gas Production Regions across the Contiguous US. Environmental Science & amp; Technology, 2021, 55, 9129-9139.                                                                          | 10.0       | 23        |
| 177 | Nitrous acid formation in a snow-free wintertime polluted rural area. Atmospheric Chemistry and Physics, 2018, 18, 1977-1996.                                                                                                                          | 4.9        | 22        |
| 178 | Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument. Atmospheric Measurement Techniques, 2018, 11, 2749-2768.                  | 3.1        | 21        |
| 179 | Revisiting Acetonitrile as Tracer of Biomass Burning in Anthropogenicâ€Influenced Environments.<br>Geophysical Research Letters, 2021, 48, e2020GL092322.                                                                                              | 4.0        | 21        |
| 180 | Characteristics and evolution of brown carbon in western United States wildfires. Atmospheric Chemistry and Physics, 2022, 22, 8009-8036.                                                                                                              | 4.9        | 21        |

| #   | Article                                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Volatile organic compound emissions from elephant grass and bamboo cultivars used as potential bioethanol crop. Atmospheric Environment, 2013, 65, 61-68.                                                                                                                                  | 4.1  | 20        |
| 182 | Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol. Atmospheric Measurement Techniques, 2021, 14, 1545-1559.                                                                                                                   | 3.1  | 20        |
| 183 | Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over the Conterminous US With a Global Variable Resolution Chemistry Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .                                                        | 3.8  | 20        |
| 184 | Development of a Fuel-Based Oil and Gas Inventory of Nitrogen Oxides Emissions. Environmental Science & Technology, 2018, 52, 10175-10185.                                                                                                                                                 | 10.0 | 19        |
| 185 | Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests.<br>Science of the Total Environment, 2017, 595, 149-158.                                                                                                                                       | 8.0  | 18        |
| 186 | Regional variation of the dimethyl sulfide oxidation mechanism in the summertime marine boundary<br>layer in the Gulf of Maine. Journal of Geophysical Research, 2009, 114, .                                                                                                              | 3.3  | 17        |
| 187 | Summertime tropospheric ozone enhancement associated with a cold front passage due to<br>stratosphereâ€ŧoâ€ŧroposphere transport and biomass burning: Simultaneous groundâ€based lidar and<br>airborne measurements. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1293-1311. | 3.3  | 17        |
| 188 | Airborne measurements of the atmospheric emissions from a fuel ethanol refinery. Journal of<br>Geophysical Research D: Atmospheres, 2015, 120, 4385-4397.                                                                                                                                  | 3.3  | 16        |
| 189 | Role of Criegee Intermediates in Secondary Sulfate Aerosol Formation in Nocturnal Power Plant<br>Plumes in the Southeast US. ACS Earth and Space Chemistry, 2019, 3, 748-759.                                                                                                              | 2.7  | 16        |
| 190 | The Relevance of Pyrogenic Carbon for Carbon Budgets From Fires: Insights From the FIREX Experiment. Global Biogeochemical Cycles, 2020, 34, e2020GB006647.                                                                                                                                | 4.9  | 16        |
| 191 | Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study. Journal of<br>Geophysical Research D: Atmospheres, 2021, 126, e2021JD035203.                                                                                                                      | 3.3  | 16        |
| 192 | Intercomparison and evaluation of satellite peroxyacetyl nitrate observations in the upper troposphere–lower stratosphere. Atmospheric Chemistry and Physics, 2016, 16, 13541-13559.                                                                                                       | 4.9  | 15        |
| 193 | Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance.<br>Atmospheric Chemistry and Physics, 2019, 19, 2765-2785.                                                                                                                                       | 4.9  | 15        |
| 194 | Contrasting Reactive Organic Carbon Observations in the Southeast United States (SOAS) and Southern California (CalNex). Environmental Science & Technology, 2020, 54, 14923-14935.                                                                                                        | 10.0 | 15        |
| 195 | Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires. Environmental Science & amp; Technology, 2022, 56, 7564-7577.                                                                                                 | 10.0 | 15        |
| 196 | Ozone production in remote oceanic and industrial areas derived from ship based measurements of peroxy radicals during TexAQS 2006. Atmospheric Chemistry and Physics, 2011, 11, 2471-2485.                                                                                                | 4.9  | 13        |
| 197 | Modelled and measured concentrations of peroxy radicals and nitrate radical in the U.S. Gulf Coast region during TexAQS 2006. Journal of Atmospheric Chemistry, 2011, 68, 331-362.                                                                                                         | 3.2  | 11        |
| 198 | Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke.<br>Environmental Science & Technology, 2021, 55, 15646-15657.                                                                                                                                   | 10.0 | 11        |

| #   | Article                                                                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Nextâ€Generation Isoprene Measurements From Space: Detecting Daily Variability at High Resolution.<br>Journal of Geophysical Research D: Atmospheres, 2022, 127, .                                                                                                                                                                        | 3.3 | 11        |
| 200 | Reconciling Assumptions in Bottomâ€Up and Topâ€Down Approaches for Estimating Aerosol Emission<br>Rates From Wildland Fires Using Observations From FIREXâ€AQ. Journal of Geophysical Research D:<br>Atmospheres, 2021, 126, .                                                                                                            | 3.3 | 10        |
| 201 | Hydrocarbon Removal in Power Plant Plumes Shows Nitrogen Oxide Dependence of Hydroxyl Radicals.<br>Geophysical Research Letters, 2019, 46, 7752-7760.                                                                                                                                                                                     | 4.0 | 9         |
| 202 | Simulating the Weekly Cycle of NO x â€VOCâ€HO x â€O 3 Photochemical System in the South Coast of<br>California During CalNexâ€2010 Campaign. Journal of Geophysical Research D: Atmospheres, 2019, 124,<br>3532-3555.                                                                                                                     | 3.3 | 8         |
| 203 | Influence of Long-Range Transport of Siberian Biomass Burning at the Mt. Bachelor Observatory during the Spring of 2015. Aerosol and Air Quality Research, 2017, 17, 2751-2761.                                                                                                                                                           | 2.1 | 6         |
| 204 | Measurements of Total OH Reactivity During CalNex‣A. Journal of Geophysical Research D:<br>Atmospheres, 2021, 126, e2020JD032988.                                                                                                                                                                                                         | 3.3 | 5         |
| 205 | Impact of high-resolution a priori profiles on satellite-based formaldehyde retrievals. Atmospheric<br>Chemistry and Physics, 2018, 18, 7639-7655.                                                                                                                                                                                        | 4.9 | 2         |
| 206 | Corrigendum to "In situ vertical profiles of aerosol extinction, mass, and composition over<br>the southeast United States during SENEX and SEAC <sup>4</sup> RS:<br>observations of a modest aerosol enhancement aloft" published in Atmos. Chem. Phys., 15,<br>7085–7102, 2015. Atmospheric Chemistry and Physics, 2015, 15, 8455-8455. | 4.9 | 1         |
| 207 | Hydrogen chloride (HCl) at ground sites during CalNex 2010 and insight into its thermodynamic properties. Journal of Geophysical Research D: Atmospheres, 2022, 127, 1-16.                                                                                                                                                                | 3.3 | 1         |