Robert W Huigens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9005674/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pyrazines and Their Benzo Derivatives. , 2022, , 229-282.		3
2	Modular Synthetic Routes to Fluorine-Containing Halogenated Phenazine and Acridine Agents That Induce Rapid Iron Starvation in Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilms. ACS Infectious Diseases, 2022, 8, 280-295.	3.8	13
3	Pyrazine and Phenazine Heterocycles: Platforms for Total Synthesis and Drug Discovery. Molecules, 2022, 27, 1112.	3.8	24
4	Molecular characterization of myotonic dystrophy fibroblast cell lines for use in small molecule screening. IScience, 2022, 25, 104198.	4.1	6
5	Transcript Profiling of Nitroxoline-Treated Biofilms Shows Rapid Up-regulation of Iron Acquisition Gene Clusters. ACS Infectious Diseases, 2022, 8, 1594-1605.	3.8	3
6	Targeting bacterial biofilms with persister-killing agents. Future Medicinal Chemistry, 2021, 13, 225-228.	2.3	3
7	Evolution of Resistance to Phenazine Antibiotics in Staphylococcus aureus and Its Role During Coinfection with Pseudomonas aeruginosa. ACS Infectious Diseases, 2021, 7, 636-649.	3.8	5
8	A Modular Synthetic Route Involving <i>N</i> -Aryl-2-nitrosoaniline Intermediates Leads to a New Series of 3-Substituted Halogenated Phenazine Antibacterial Agents. Journal of Medicinal Chemistry, 2021, 64, 7275-7295.	6.4	21
9	Ring Distortion of Vincamine Leads to the Identification of Re-Engineered Antiplasmodial Agents. ACS Omega, 2021, 6, 20455-20470.	3.5	4
10	Design, synthesis and biological evaluation of a halogenated phenazine-erythromycin conjugate prodrug for antibacterial applications. Organic and Biomolecular Chemistry, 2021, 19, 1483-1487.	2.8	15
11	An ether-linked halogenated phenazine-quinone prodrug model for antibacterial applications. Organic and Biomolecular Chemistry, 2021, 19, 6603-6608.	2.8	6
12	Preventing Morphine-Seeking Behavior through the Re-Engineering of Vincamine's Biological Activity. Journal of Medicinal Chemistry, 2020, 63, 5119-5138.	6.4	30
13	Instructive Advances in Chemical Microbiology Inspired by Nature's Diverse Inventory of Molecules. ACS Infectious Diseases, 2020, 6, 541-562.	3.8	9
14	Progress towards a stable cephalosporin-halogenated phenazine conjugate for antibacterial prodrug applications. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127515.	2.2	10
15	Yohimbine as a Starting Point to Access Diverse Natural Product-Like Agents with Re-programmed Activities against Cancer-Relevant GPCR Targets. Bioorganic and Medicinal Chemistry, 2020, 28, 115546.	3.0	13
16	Re-Engineering of Yohimbine's Biological Activity through Ring Distortion: Identification and Structure–Activity Relationships of a New Class of Antiplasmodial Agents. ACS Infectious Diseases, 2020, 6, 159-167.	3.8	20
17	Efficacy data of halogenated phenazine and quinoline agents and an NH125 analogue to veterinary mycoplasmas. BMC Veterinary Research, 2020, 16, 107.	1.9	2
18	Combination Treatment of Erythromycin and Furamidine Provides Additive and Synergistic Rescue of Mis-splicing in Myotonic Dystrophy Type 1 Models. ACS Pharmacology and Translational Science, 2019, 2, 247-263.	4.9	20

ROBERT W HUIGENS

#	Article	IF	CITATIONS
19	Rapid kill assessment of an <i>N</i> -arylated NH125 analogue against drug-resistant microorganisms. MedChemComm, 2019, 10, 712-716.	3.4	4
20	Microwave-enhanced, stereospecific ring-closure of medium-ring cyanamide ethers to yohimbine. Tetrahedron Letters, 2019, 60, 1182-1185.	1.4	2
21	Recent Progress in Natural-Product-Inspired Programs Aimed To Address Antibiotic Resistance and Tolerance. Journal of Medicinal Chemistry, 2019, 62, 7618-7642.	6.4	73
22	Phenazine Antibioticâ€Inspired Discovery of Bacterial Biofilmâ€Eradicating Agents. ChemBioChem, 2019, 20, 2885-2902.	2.6	24
23	Harnessing the Chemistry of the Indole Heterocycle to Drive Discoveries in Biology and Medicine. ChemBioChem, 2019, 20, 2273-2297.	2.6	73
24	Turning the Tide against Antibiotic Resistance by Evaluating Novel, Halogenated Phenazine, Quinoline, and NH125 Compounds against Ureaplasma Species Clinical Isolates and Mycoplasma Type Strains. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	6
25	An Efficient Buchwald–Hartwig/Reductive Cyclization for the Scaffold Diversification of Halogenated Phenazines: Potent Antibacterial Targeting, Biofilm Eradication, and Prodrug Exploration. Journal of Medicinal Chemistry, 2018, 61, 3962-3983.	6.4	47
26	The Path to New Halogenated Quinolines With Enhanced Activities Against <i>Staphylococcus epidermidis</i> . Microbiology Insights, 2018, 11, 117863611880853.	2.0	6
27	Transcript Profiling of MRSA Biofilms Treated with a Halogenated Phenazine Eradicating Agent: A Platform for Defining Cellular Targets and Pathways Critical to Biofilm Survival. Angewandte Chemie, 2018, 130, 15749-15754.	2.0	4
28	Transcript Profiling of MRSA Biofilms Treated with a Halogenated Phenazine Eradicating Agent: A Platform for Defining Cellular Targets and Pathways Critical to Biofilm Survival. Angewandte Chemie - International Edition, 2018, 57, 15523-15528.	13.8	50
29	Halogenated quinolines bearing polar functionality at the 2-position: Identification of new antibacterial agents with enhanced activity against Staphylococcus epidermidis. European Journal of Medicinal Chemistry, 2018, 155, 705-713.	5.5	14
30	A Tryptoline Ringâ€Distortion Strategy Leads to Complex and Diverse Biologically Active Molecules from the Indole Alkaloid Yohimbine. Chemistry - A European Journal, 2017, 23, 4327-4335.	3.3	61
31	Antimicrobial peptide-inspired NH125 analogues: bacterial and fungal biofilm-eradicating agents and rapid killers of MRSA persisters. Organic and Biomolecular Chemistry, 2017, 15, 5503-5512.	2.8	30
32	A Highly Potent Class of Halogenated Phenazine Antibacterial and Biofilm-Eradicating Agents Accessed Through a Modular Wohl-Aue Synthesis. Scientific Reports, 2017, 7, 2003.	3.3	37
33	Nitroxoline: a broad-spectrum biofilm-eradicating agent against pathogenic bacteria. International Journal of Antimicrobial Agents, 2017, 49, 247-251.	2.5	51
34	Identification of Nâ€Arylated NH125 Analogues as Rapid Eradicating Agents against MRSA Persister Cells and Potent Biofilm Killers of Gramâ€Positive Pathogens. ChemBioChem, 2017, 18, 352-357.	2.6	19
35	Identification of Nitroxoline and Halogenated Quinoline Analogues with Antibacterial Activities against Plant Pathogens. ChemistrySelect, 2017, 2, 6235-6239.	1.5	0
36	Microwave-enhanced FriedlÃ ¤ der synthesis for the rapid assembly of halogenated quinolines with antibacterial and biofilm eradication activities against drug resistant and tolerant bacteria. MedChemComm, 2017, 8, 720-724.	3.4	21

ROBERT W HUIGENS

#	Article	IF	CITATIONS
37	Eradicating Bacterial Biofilms with Natural Products and their Inspired Analogues that Operate Through Unique Mechanisms. Current Topics in Medicinal Chemistry, 2017, 17, 1954-1964.	2.1	17
38	Synthetically Tuning the 2â€Position of Halogenated Quinolines: Optimizing Antibacterial and Biofilm Eradication Activities via Alkylation and Reductive Amination Pathways. Chemistry - A European Journal, 2016, 22, 9181-9189.	3.3	29
39	Structure–Activity Relationships of a Diverse Class of Halogenated Phenazines That Targets Persistent, Antibiotic-Tolerant Bacterial Biofilms and <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2016, 59, 3808-3825.	6.4	70
40	In vitro antifungal and antibiofilm activities of halogenated quinoline analogues against Candida albicans and Cryptococcus neoformans. International Journal of Antimicrobial Agents, 2016, 48, 208-211.	2.5	17
41	Eradicating Bacterial Biofilms with Natural Products and Their Inspired Analogues that Operate Through Unique Mechanisms. Current Topics in Medicinal Chemistry, 2016, , .	2.1	7
42	Halogenated Phenazines that Potently Eradicate Biofilms, MRSA Persister Cells in Nonâ€Biofilm Cultures, and <i>Mycobacterium tuberculosis</i> . Angewandte Chemie - International Edition, 2015, 54, 14819-14823.	13.8	77
43	A Phytochemical–Halogenated Quinoline Combination Therapy Strategy for the Treatment of Pathogenic Bacteria. ChemMedChem, 2015, 10, 1157-1162.	3.2	20
44	Halogenated quinolines discovered through reductive amination with potent eradication activities against MRSA, MRSE and VRE biofilms. Organic and Biomolecular Chemistry, 2015, 13, 10290-10294.	2.8	28
45	Bromophenazine derivatives with potent inhibition, dispersion and eradication activities against Staphylococcus aureus biofilms. RSC Advances, 2015, 5, 1120-1124.	3.6	39
46	Phenazine antibiotic inspired discovery of potent bromophenazine antibacterial agents against Staphylococcus aureus and Staphylococcus epidermidis. Organic and Biomolecular Chemistry, 2014, 12, 881-886.	2.8	74
47	Discovery of quinoline small molecules with potent dispersal activity against methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis biofilms using a scaffold hopping strategy. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5076-5080.	2.2	64
48	A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. Nature Chemistry, 2013, 5, 195-202.	13.6	270
49	Dual Targeting of the Warburg Effect with a Glucoseâ€Conjugated Lactate Dehydrogenase Inhibitor. ChemBioChem, 2013, 14, 2263-2267.	2.6	43
50	Synthesis and biological activity of 2-aminoimidazole triazoles accessed by Suzuki–Miyaura cross-coupling. Organic and Biomolecular Chemistry, 2011, 9, 3041.	2.8	39
51	The chemical synthesis and antibiotic activity of a diverse library of 2-aminobenzimidazole small molecules against MRSA and multidrug-resistant A. baumannii. Bioorganic and Medicinal Chemistry, 2010, 18, 663-674.	3.0	53
52	Modulating the development of E. coli biofilms with 2-aminoimidazoles. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6310-6312.	2.2	31
53	Synergistic Effects between Conventional Antibiotics and 2-Aminoimidazole-Derived Antibiofilm Agents. Antimicrobial Agents and Chemotherapy, 2010, 54, 2112-2118.	3.2	190
54	Evaluation of dihydrooroidin as an antifouling additive in marine paint. International Biodeterioration and Biodegradation, 2009, 63, 529-532.	3.9	50

ROBERT W HUIGENS

#	Article	IF	CITATIONS
55	A 2-Aminobenzimidazole That Inhibits and Disperses Gram-Positive Biofilms through a Zinc-Dependent Mechanism. Journal of the American Chemical Society, 2009, 131, 9868-9869.	13.7	79
56	Inhibition of Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa biofilm formation with a class of TAGE-triazole conjugates. Organic and Biomolecular Chemistry, 2009, 7, 794.	2.8	50
57	Synthesis and Screening of an Oroidin Library against <i>Pseudomonas aeruginosa</i> Biofilms. ChemBioChem, 2008, 9, 1267-1279.	2.6	109
58	Control of bacterial biofilms with marine alkaloid derivatives. Molecular BioSystems, 2008, 4, 614.	2.9	64
59	Inhibition of Pseudomonas aeruginosa Biofilm Formation with Bromoageliferin Analogues. Journal of the American Chemical Society, 2007, 129, 6966-6967.	13.7	129