Didier Pinault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9003808/publications.pdf

Version: 2024-02-01

172457 243625 5,181 47 29 44 citations h-index g-index papers 50 50 50 4123 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Frontoparietal anodal tDCS reduces ketamine-induced oscillopathies. Translational Neuroscience, 2021, 12, 282-296.	1.4	1
2	The $\langle i \rangle N \langle i \rangle$ -Methyl d-Aspartate Glutamate Receptor Antagonist Ketamine Disrupts the Functional State of the Corticothalamic Pathway. Cerebral Cortex, 2017, 27, bhw168.	2.9	19
3	A Neurophysiological Perspective on a Preventive Treatment against Schizophrenia Using Transcranial Electric Stimulation of the Corticothalamic Pathway. Brain Sciences, 2017, 7, 34.	2.3	15
4	DNA microarray unravels rapid changes in transcriptome of MK-801 treated rat brain. World Journal of Biological Chemistry, 2015, 6, 389.	4.3	5
5	Neuregulin 1 Expression and Electrophysiological Abnormalities in the Neuregulin 1 Transmembrane Domain Heterozygous Mutant Mouse. PLoS ONE, 2015, 10, e0124114.	2.5	21
6	Chronic administration of antipsychotics attenuates ongoing and ketamine-induced increases in cortical \hat{I}^3 oscillations. International Journal of Neuropsychopharmacology, 2014, 17, 1895-1904.	2.1	40
7	<scp>HCN</scp> channelopathy and cardiac electrophysiologic dysfunction in genetic and acquired rat epilepsy models. Epilepsia, 2014, 55, 609-620.	5.1	29
8	Acute effect of carbamazepine on corticothalamic 5–9â€≺scp>Hz and thalamocortical spindle (10–16â€≺scp>Hz) oscillations in the rat. European Journal of Neuroscience, 2014, 39, 788-799.	2.6	4
9	N-Methyl D-Aspartate Receptor Antagonists Amplify Network Baseline Gamma Frequency (30–80 Hz) Oscillations: Noise and Signal. AIMS Neuroscience, 2014, 1, 169-182.	2.3	3
10	Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy. PLoS ONE, 2013, 8, e66962.	2.5	21
11	Acute administration of typical and atypical antipsychotics reduces EEG gamma power, but only the preclinical compound LY379268 reduces the ketamine-induced rise in gamma power. International Journal of Neuropsychopharmacology, 2012, 15, 657-668.	2.1	95
12	Opposite effects of ketamine and deep brain stimulation on rat thalamocortical information processing. European Journal of Neuroscience, 2012, 36, 3407-3419.	2.6	57
13	Rhythmic neuronal activity in S2 somatosensory and insular cortices contribute to the initiation of absenceâ€related spikeâ€andâ€wave discharges. Epilepsia, 2012, 53, 1948-1958.	5.1	48
14	The Juxtacellular Recording-Labeling Technique. Neuromethods, 2011, , 41-75.	0.3	13
15	Dysfunctional Thalamus-Related Networks in Schizophrenia. Schizophrenia Bulletin, 2011, 37, 238-243.	4.3	97
16	A genetic epilepsy rat model displays endophenotypes of psychosis. Neurobiology of Disease, 2010, 39, 116-125.	4.4	51
17	Special feature: deep brain stimulation. European Journal of Neuroscience, 2010, 32, 1067-1069.	2.6	1
18	NMDA Receptor Hypofunction Leads to Generalized and Persistent Aberrant \hat{I}^3 Oscillations Independent of Hyperlocomotion and the State of Consciousness. PLoS ONE, 2009, 4, e6755.	2.5	209

#	Article	IF	CITATIONS
19	Brain and Heart Links: Alterations in Cardiac Function and HCN Channel Expression in Genetic Absence Epilepsy Rats from Strasbourg. Journal of Clinical Neuroscience, 2009, 16, 1520.	1.5	0
20	26. In vivo study of the impact of amygdala kindling on the firing pattern of single neurons in the thalamus in a genetic absence epilepsy rat model. Journal of Clinical Neuroscience, 2009, 16, 1533.	1.5	0
21	N-Methyl d-Aspartate Receptor Antagonists Ketamine and MK-801 Induce Wake-Related Aberrant Î ³ Oscillations in the Rat Neocortex. Biological Psychiatry, 2008, 63, 730-735.	1.3	296
22	463: Neuronal firing patterns of higher order thalamocortical neurons during Inter-ictal absence seizure transition: Potential implications for loss of consciousness. Journal of Clinical Neuroscience, 2008, 15, 365.	1.5	0
23	Cortical Control of Zona Incerta. Journal of Neuroscience, 2007, 27, 1670-1681.	3.6	63
24	Corticothalamic 5-9 Hz oscillations are more pro-epileptogenic than sleep spindles in rats. Journal of Physiology, 2006, 574, 209-227.	2.9	59
25	Functional stabilization of weakened thalamic pacemaker channel regulation in rat absence epilepsy. Journal of Physiology, 2006, 575, 83-100.	2.9	64
26	A new stabilizing craniotomy–duratomy technique for single-cell anatomo-electrophysiological exploration of living intact brain networks. Journal of Neuroscience Methods, 2005, 141, 231-242.	2.5	19
27	Cellular and network mechanisms of genetically-determined absence seizures. Thalamus & Related Systems, 2005, 3, 181.	0.5	89
28	The thalamic reticular nucleus: structure, function and concept. Brain Research Reviews, 2004, 46, 1-31.	9.0	535
29	Cellular interactions in the rat somatosensory thalamocortical system during normal and epileptic 5–9 Hz oscillations. Journal of Physiology, 2003, 552, 881-905.	2.9	128
30	Medium-voltage $5\hat{a} \in 9$ -Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons. Neuroscience, 2001, 105, 181-201.	2.3	128
31	Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy. Journal of Physiology, 1998, 509, 449-456.	2.9	218
32	Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: A three-dimensional, graphic, and morphometric analysis. Journal of Comparative Neurology, 1998, 391, 180-203.	1.6	169
33	Anatomical evidence for a mechanism of lateral inhibition in the rat thalamus. European Journal of Neuroscience, 1998, 10, 3462-3469.	2.6	115
34	Dendrodendritic and Axoaxonic Synapses in the Thalamic Reticular Nucleus of the Adult Rat. Journal of Neuroscience, 1997, 17, 3215-3233.	3.6	123
35	A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. Journal of Neuroscience Methods, 1996, 65, 113-136.	2.5	944
36	Corticothalamic Projections from the Cortical Barrel Field to the Somatosensory Thalamus in Rats: A Single-fibre Study Using Biocytin as an Anterograde Tracer. European Journal of Neuroscience, 1995, 7, 19-30.	2.6	354

#	Article	lF	CITATIONS
37	The Axonal Arborization of Single Thalamic Reticular Neurons in the Somatosensory Thalamus of the Rat. European Journal of Neuroscience, 1995, 7, 31-40.	2.6	141
38	Thalamic reticular input to the rat visual thalamus: a single fiber study using biocytin as an anterograde tracer. Brain Research, 1995, 670, 147-152.	2.2	56
39	The thalamic reticular nucleus does not send commissural projection to the contralateral parafascicular nucleus in the rat. Brain Research, 1995, 679, 123-134.	2.2	12
40	Single striatofugal axons arborizing in both pallidal segments and in the substantia nigra in primates. Brain Research, 1995, 698, 280-284.	2.2	99
41	Backpropagation of action potentials generated at ectopic axonal loci: hypothesis that axon terminals integrate local environmental signals. Brain Research Reviews, 1995, 21, 42-92.	9.0	92
42	Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Research, 1994, 664, 215-219.	2.2	235
43	Golgi-like labeling of a single neuron recorded extracellularly. Neuroscience Letters, 1994, 170, 255-260.	2.1	321
44	Muscarinic inhibition of reticular thalamic cells by basal forebrain neurones. NeuroReport, 1992, 3, 1101-1104.	1.2	22
45	Voltage-dependent 40-Hz oscillations in rat reticular thalamic neurons in vivo. Neuroscience, 1992, 51, 245-258.	2.3	131
46	Ectopic axonal firing in an epileptic cortical focus is not triggered by thalamocortical volleys during the interictal stage. Brain Research, 1992, 576, 175-180.	2.2	9
47	The origin of rhythmic fast subthreshold depolarizations in thalamic relay cells of rats under urethane anaesthesia. Brain Research, 1992, 595, 295-300.	2.2	28