Takashige Omatsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9002336/publications.pdf Version: 2024-02-01

		147801	138484
289	4,395	31	58
papers	citations	h-index	g-index
292	292	292	2283
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Generation of hexagonal close-packed ring-shaped structures using an optical vortex. Nanophotonics, 2022, 11, 855-864.	6.0	14
2	Intracavity spherical aberration for selective generation of single-transverse-mode Laguerre-Gaussian output with order up to 95. PhotoniX, 2022, 3, .	13.5	14
3	Tunable 2.3–3 μm optical vortex parametric laser. Laser Physics, 2022, 32, 045001.	1.2	3
4	Tunable terahertz Bessel beams with orbital angular momentum. , 2022, 1, 633.		5
5	Optical vortex array for two-dimensional exclusive-OR operation. Applied Physics B: Lasers and Optics, 2022, 128, .	2.2	6
6	Laser-induced forward-transfer with light possessing orbital angular momentum. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 52, 100535.	11.6	9
7	Nanotwist of aluminum with irradiation of a single optical vortex pulse. OSA Continuum, 2021, 4, 403.	1.8	9
8	Near and mid-infrared optical vortex parametric oscillator based on KTA. Scientific Reports, 2021, 11, 8013.	3.3	11
9	Chirogenesis and Amplification of Molecular Chirality Using Optical Vortices. Angewandte Chemie, 2021, 133, 12929-12933.	2.0	5
10	Chirogenesis and Amplification of Molecular Chirality Using Optical Vortices. Angewandte Chemie - International Edition, 2021, 60, 12819-12823.	13.8	23
11	Radially polarized solid-state Raman laser. , 2021, , .		0
12	Azo-polymer spiral surface relief formation with rotating Hermite-Gaussian beams. , 2021, , .		0
13	Optical vortex lattice mode generation from a diode-pumped Pr ³⁺ :LiYF ₄ laser. Journal of Optics (United Kingdom), 2021, 23, 075502.	2.2	16
14	High-resolution terahertz single-pixel imaging for 2D spectral analysis. , 2021, , .		0
15	Light twists materials. , 2021, , .		0
16	Laguerre-Gaussian beam generation via enhanced intracavity spherical aberration. Optics Express, 2021, 29, 27783.	3.4	24
17	Direct generation of 523â€nm orbital Poincaré mode from a diode-pumped Pr ³⁺ :LiYF ₄ laser with an off-axis optical needle pumping geometry. Optics Express, 2021, 29, 30409.	3.4	24
18	Direct Generation of Vortex Lattice Modes from an Intracavity Frequency Doubled Pr:YLF laser. , 2021, ,		3

#	Article	IF	CITATIONS
19	Propagation-invariant vortex Airy beam whose singular pointÂfollows its main lobe. New Journal of Physics, 2021, 23, 113043.	2.9	4
20	Cascaded vector vortex mode generation from a solid-state Raman laser. Applied Optics, 2021, 60, 10638-10642.	1.8	2
21	Plasmonic Manipulation of Sodium Chlorate Chiral Crystallization: Directed Chirality Transfer via Contact-Induced Polymorphic Transformation and Formation of Liquid Precursor. Crystal Growth and Design, 2020, 20, 5493-5507.	3.0	7
22	Plasmonic Manipulation-Controlled Chiral Crystallization of Sodium Chlorate. Journal of Physical Chemistry Letters, 2020, 11, 4422-4426.	4.6	29
23	Tunable near- and mid-infrared (1.36–1.63 <i>µ</i> m and 3.07–4.81 <i>µ</i> m) optical vortex laser source. Laser Physics Letters, 2020, 17, 045402.	1.4	14
24	Microneedle structuring of Si(111) by irradiation with picosecond optical vortex pulses. Applied Physics Express, 2020, 13, 062006.	2.4	6
25	Investigation of laser-induced-metal phase of MoTe ₂ and its contact property via scanning gate microscopy. Nanotechnology, 2020, 31, 205205.	2.6	11
26	Twisted mass transport enabled by the angular momentum of light. Journal of Nanophotonics, 2020, 14, 1.	1.0	15
27	Purity and efficiency of hybrid orbital angular momentum-generating metasurfaces. Journal of Nanophotonics, 2020, 14, 1.	1.0	13
28	Picosecond optical vortex-induced chiral surface relief in an azo-polymer film. Journal of Nanophotonics, 2020, 14, 1.	1.0	12
29	Direct generation of 1108â€nm and 1173â€nm Laguerre-Gaussian modes from a self-Raman Nd:GdVO ₄ laser. Optics Express, 2020, 28, 24095.	3.4	17
30	Broadband high-resolution terahertz single-pixel imaging. Optics Express, 2020, 28, 28868.	3.4	23
31	Ultraviolet intracavity frequency-doubled Pr3+:LiYF4 orbital Poincaré laser. Optics Express, 2020, 28, 37397.	3.4	18
32	Photopolymerization with high-order Bessel light beams. Optics Letters, 2020, 45, 4080.	3.3	19
33	1108 nm vortex mode generation from a Self-Raman Nd:GdVO4 laser. , 2020, , .		0
34	Spinning twin-mode generation in a bacteriorhodopsin suspension. , 2020, , .		0
35	Fractional optical vortex creates a curved "spin-jet". , 2020, , .		0
36	Two photon-induced chiral structures of azo-polymers. , 2020, , .		0

#	Article	IF	CITATIONS
37	Fractional Optical Vortex Induced Mass Forward Transfer -Deflected â€~Spin-Jet' , 2020, , .		Ο
38	Optical vortex induced flower-shaped surface relief of azo-polymers. , 2020, , .		0
39	Twisted Materials: A New Twist for Materials Science: The Formation of Chiral Structures Using the Angular Momentum of Light (Advanced Optical Materials 14/2019). Advanced Optical Materials, 2019, 7, 1970052.	7.3	2
40	Interparticle-Interaction-Mediated Anomalous Acceleration of Nanoparticles under Light-Field with Coupled Orbital and Spin Angular Momentum. Nano Letters, 2019, 19, 4873-4878.	9.1	18
41	Generation of Multiple Up-Converted OAM States from a Tunable Optical Vortex Parametric Laser Source. , 2019, , .		Ο
42	Handedness Control of Visible Optical Vortex Output from a Diode-Pumped Pr3+:YLF Laser. , 2019, , .		1
43	Dynamics analysis of nanoparticles optically driven by a Laguerre-Gaussian beam with optical spin. Journal of Physics: Conference Series, 2019, 1220, 012008.	0.4	2
44	A New Twist for Materials Science: The Formation of Chiral Structures Using the Angular Momentum of Light. Advanced Optical Materials, 2019, 7, 1801672.	7.3	89
45	In Situ Microscopic Observation on Surface Kinetics in Optical Trapping-Induced Crystal Growth: Step Formation, Wetting Transition, and Nonclassical Growth. Crystal Growth and Design, 2019, 19, 4138-4150.	3.0	3
46	Power-scalable and high-speed orbital angular momentum modulator. Japanese Journal of Applied Physics, 2019, 58, 032009.	1.5	5
47	Symmetry Breaking of Optical Vortex in Bacteriorhodopsin Suspensions. , 2019, , .		3
48	Creation of Two-Photon Absorption Photo-Polymerization Induced Helical Microfibers. , 2019, , .		1
49	Plasmonic Trapping-Induced Crystallization of Acetaminophen. Crystal Growth and Design, 2019, 19, 529-537.	3.0	11
50	Direct generation of red and orange optical vortex beams from an off-axis diode-pumped Pr ³⁺ :YLF laser. Optics Express, 2019, 27, 18190.	3.4	36
51	Generation of high-quality terahertz OAM mode based on soft-aperture difference frequency generation. Optics Express, 2019, 27, 31840.	3.4	29
52	Optical vortex-induced forward mass transfer: manifestation of helical trajectory of optical vortex. Optics Express, 2019, 27, 38019.	3.4	9
53	Two-photon induced chiral mass-transport of azo-polymers as a function of pulse duration. , 2019, , .		0

54 Micron-scale â€~ink-jet' created by optical vortex ablation. , 2019, , .

#	Article	IF	CITATIONS
55	Direct generation of vortex beams from a diode-pumped Pr3+:YLF laser. , 2019, , .		1
56	Special Section Guest Editorial: Optical Manipulation and Structured Materials. Journal of Nanophotonics, 2019, 13, 1.	1.0	0
57	Generation of coupled orbital angular momentum modes from an optical vortex parametric laser source. Optics Express, 2019, 27, 37025.	3.4	5
58	Optical vortex-induced forward mass transfer: manifestation of helical trajectory of optical vortex. Optics Express, 2019, 27, 38019.	3.4	18
59	"Freezing―of NaClO ₃ Metastable Crystalline State by Optical Trapping in Unsaturated Microdroplet. Crystal Growth and Design, 2018, 18, 734-741.	3.0	19
60	Bottle beam generation from a frequency-doubled Nd:YVO4 laser. Scientific Reports, 2018, 8, 16576.	3.3	9
61	Tunable 3 µm optical vortex parametric oscillator. Japanese Journal of Applied Physics, 2018, 57, 122701.	1.5	9
62	Photopolymerization with Light Fields Possessing Orbital Angular Momentum: Generation of Helical Microfibers. ACS Photonics, 2018, 5, 4156-4163.	6.6	33
63	Feature issue introduction: Topological Photonics and Materials. Optics Express, 2018, 26, 25507.	3.4	2
64	In Situ Observation of Chiral Symmetry Breaking in NaClO ₃ Chiral Crystallization Realized by Thermoplasmonic Micro-Stirring. Crystal Growth and Design, 2018, 18, 4230-4239.	3.0	10
65	Ultra-widely tunable mid-infrared (6–18  μm) optical vortex source. Applied Optics, 2018, 57, 620.	1.8	11
66	Nanoscale chiral surface relief of azo-polymers with nearfield OAM light. Optics Express, 2018, 26, 22197.	3.4	28
67	Tunable near-infrared optical vortex parametric laser with versatile orbital angular momentum states. Applied Optics, 2018, 57, 10004.	1.8	8
68	Two photon absorption induced chiral mass transport of azo–polymer by optical vortex illumination. , 2018, , .		0
69	Optical vortex parametric laser with a versatile orbital angular momentum. , 2018, , .		0
70	Enhancement of Nonlinearity by Terahertz Vortex Beam. , 2018, , .		1
71	Handedness control of a mid-infrared 3.5 μm optical vortex MgO: PPLN parametric oscillator. , 2018, , .		0

72 Low threshold tunable 2 $\hat{l} {}^1\!\!/ 4m$ optical vortex laser source. , 2018, , .

#	Article	IF	CITATIONS
73	Direct generation of bottle beam from a frequency-doubled Nd:YVO4 laser. , 2018, , .		Ο
74	Chiral Mass Transport Induced by Optical Angular Momentum. The Review of Laser Engineering, 2018, 46, 200.	0.0	0
75	Can light twist materials?. , 2018, , .		0
76	Optical vortices establish self-written helical fiber via two photon absorption. , 2018, , .		0
77	Creation of Structured Materials with Optical Vortices. , 2018, , .		Ο
78	Two-photon induced â€~super-resolution' single-armed relief in azo-polymer film. , 2018, , .		0
79	Power- and Frequency-Scalable Modulation of the Optical Orbital Angular Momentum. , 2018, , .		Ο
80	Widely tunable (2-6THz) Terahertz vortex source. , 2018, , .		0
81	Versatile vortex laser sources and their application. , 2018, , .		Ο
82	Fabrication of hollow microneedles by optical vortex illumination. , 2018, , .		1
83	Optical vortex induced chiral mass-transport of azo-polymer through two photon absorption. , 2018, ,		1
84	String-shaped Au structures fabricated by optical vortex ablation. , 2018, , .		0
85	Shrinking optical vortex to the nanoscale. , 2018, , .		2
86	Sub-millimeter helical fiber created by Bessel vortex beam illumination. , 2018, , .		0
87	Bottle beam generation from a frequency-doubled Nd:YVO4 laser with a tightly end-pumping geometry. , 2018, , .		Ο
88	Welcome to OSA Continuum. OSA Continuum, 2018, 1, 1.	1.8	0
89	Circularly polarized lights twist azo-polymer to form helical surface relief. Proceedings of SPIE, 2017, , .	0.8	0
90	Twisted polymeric microfiber formed by structured light illumination. Proceedings of SPIE, 2017, , .	0.8	0

#	Article	IF	CITATIONS
91	Plasmonic Au nano-needle fabricated by optical vortex laser illumination. , 2017, , .		0
92	Optical vortex pumped solid-state Raman laser. , 2017, , .		1
93	Plasmonic Heating-Assisted Laser-Induced Crystallization from a NaClO ₃ Unsaturated Mother Solution. Crystal Growth and Design, 2017, 17, 809-818.	3.0	15
94	Wavelength-versatile optical vortex lasers. Journal of Optics (United Kingdom), 2017, 19, 123002.	2.2	82
95	Ultra-broadband tunable (0.67–2.57 µm) optical vortex parametric oscillator. Japanese Journal of Applied Physics, 2017, 56, 102701.	1.5	6
96	Circularly polarized lights illumination to fabricate helical surface relief in azo-polymer film. , 2017, ,		0
97	Mid-infrared optical vortex parametric laser with topological charge versatility. , 2017, , .		0
98	Mid-infrared 3–5 μηι optical vortex MgO:PPLN parametric oscillator. , 2017, , .		0
99	Ultraviolet optical vortex generation using a pair of β-BaB_2O_4 crystals with inverted orientations. Applied Optics, 2017, 56, 8075.	1.8	3
100	Chiral nearfield generation from a chiral surface relief fabricated by optical vortex illumination with nano-imprinting technology. , 2017, , .		0
101	Exploring the self-mode locking and vortex structures of nonplanar elliptical modes in selectively end-pumped Nd:YVO_4 lasers: manifestation of large fractional orbital angular momentum. Optics Express, 2017, 25, 22769.	3.4	11
102	Generating laser transverse modes analogous to quantum Green's functions of two-dimensional harmonic oscillators. Photonics Research, 2017, 5, 733.	7.0	12
103	Focus issue introduction: synergy of structured light and structured materials. Optics Express, 2017, 25, 16681.	3.4	10
104	Azo-polymer film twisted to form a helical surface relief by illumination with a circularly polarized Gaussian beam. Optics Express, 2017, 25, 12499.	3.4	32
105	Crystalline silicon (111) needle formed by optical vortex illumination. , 2017, , .		1
106	Millijoule-level, ultra-broadband tunable (0.67–2.4 μm) optical vortex parametric laser. , 2017, , .		0
107	Q-switched self-Raman vortex laser using a defect mirror. , 2017, , .		0
108	Widely tunable optical vortex parametric laser with versatility of orbital angular momentum. , 2017, , .		0

#	Article	IF	CITATIONS
109	Optical vortex illumination to form polymeric twisted fiber. , 2017, , .		Ο
110	High average power ultraviolet picosecond optical vortex generation. , 2017, , .		0
111	Creating a crystalline silicon (111) needle by optical vortex illumination. , 2017, , .		0
112	Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle. Scientific Reports, 2016, 6, 21738.	3.3	106
113	Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate. Scientific Reports, 2016, 6, 38880.	3.3	33
114	Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination. Applied Physics Letters, 2016, 108, .	3.3	54
115	Terahertz Phonon Modes of Highly Efficient Electro-optic Phenyltriene OH1 Crystals. Journal of Physical Chemistry C, 2016, 120, 24360-24369.	3.1	12
116	Nanostructures creation by optical angular momentum transfer. Proceedings of SPIE, 2016, , .	0.8	0
117	Octave-band tunable optical vortex parametric oscillator. Optics Express, 2016, 24, 15204.	3.4	18
118	Beam propagation of efficient frequency-doubled optical vortices. Applied Optics, 2016, 55, 5263.	2.1	7
119	Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1063-1068.	1.8	28
120	A continuous-wave vortex Raman laser with sum frequency generation. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	12
121	Optical angular momentum structures chiral materials and devices. , 2016, , .		0
122	Towards chiral materials science based on optical vortices illumination. , 2016, , .		0
123	Tunable optical vortex generation in a â€~whole mid-infrared' wavelength region of 6-18 μm. , 2016, , .		0
124	Monocycle 0.6-terahertz vortex generation. , 2016, , .		0
125	Monocrystalline silicon needle formation by optical vortex illumination. , 2016, , .		0
126	Octave-band tunable (0.74-1.89 Âμm) optical vortex laser. , 2016, , .		0

#	Article	IF	CITATIONS
127	High average power picosecond sapphire face-cooled Nd :YVO <inf>4</inf> bounce laser system. , 2015, , .		0
128	Terahertz bolometric detection by thermal noise in graphene field effect transistor. Applied Physics Letters, 2015, 107, .	3.3	5
129	Optical vortices pioneer chiral nano-structures. , 2015, , .		0
130	Broadband THz vortex pulse generation by a Tsurupica spiral phase plate. , 2015, , .		0
131	Handedness control in a tunable midinfrared (60–125  μm) vortex laser. Journal of the Optical Societ America B: Optical Physics, 2015, 32, 2406.	y <u>of</u>	21
132	Novel THz-wave detection technique via interaction between optical pumping waves and THz-wave generated by Cherenkov phase matching. , 2015, , .		0
133	Highly efficient frequency doubling of optical vortex. , 2015, , .		1
134	Handedness control of sub-millijoule mid-infrared (6–12μm) vortex laser. , 2015, , .		0
135	Terahertz wave generation using type II phase matching polarization combination via difference frequency generation with LiNbO ₃ . Japanese Journal of Applied Physics, 2015, 54, 062202.	1.5	13
136	High average power, diffraction-limited picosecond output from a sapphire face-cooled Nd:YVO_4 slab amplifier. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 714.	2.1	9
137	Real-time terahertz wave sensing via infrared detection interacted with evanescent terahertz waves. Optical Review, 2015, 22, 166-169.	2.0	2
138	Widely-tunable vortex output from a singly resonant optical parametric oscillator. Optics Express, 2015, 23, 18338.	3.4	24
139	Widely tunable 1μm optical vortex laser. , 2015, , .		0
140	Handedness control of mid-infrared (9-12μm) vortex laser. , 2015, , .		0
141	Real-time THz-wave spectroscopy via infrared lights detection interacted with evanescent THz waves. , 2014, , .		0
142	Chiral polymeric relief structures fabricated by using optical vortices. , 2014, , .		0
143	Evaluation of polarized terahertz waves generated by Cherenkov phase matching. Applied Optics, 2014, 53, 1518.	1.8	7
144	Helical lights twist materials to form chiral structures -Chiral Photonics , 2014, , .		0

#	Article	IF	CITATIONS
145	An intracavity, frequency-doubled self-Raman vortex laser. Optics Express, 2014, 22, 5400.	3.4	39
146	Ultraviolet vortex generation using periodically bonded β-BaB_2O_4 device. Optics Express, 2014, 22, 12829.	3.4	15
147	Tunable mid-infrared (63–12 μm)optical vortex pulse generation. Optics Express, 2014, 22, 26351.	3.4	31
148	Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate. Applied Physics Letters, 2014, 104, .	3.3	83
149	Frequency-doubling of an optical vortex output from a stressed Yb-doped fiber amplifier. Applied Physics B: Lasers and Optics, 2014, 116, 249-254.	2.2	11
150	Light induced conch-shaped relief in an azo-polymer film. Scientific Reports, 2014, 4, 4281.	3.3	113
151	Tunable mid-infrared (6.3–7.8 µm) optical vortex laser. , 2014, , .		Ο
152	Chiral mono-crystalline silicon nano-cone fabrication by optical vortex pumping. , 2014, , .		0
153	GR-FET application for high-frequency detection device. Nanoscale Research Letters, 2013, 8, 22.	5.7	3
154	Cherenkov phase-matched terahertz wave generation and its spectroscopic applications. Proceedings of SPIE, 2013, , .	0.8	1
155	Ultra-violet optical vortex generation. , 2013, , .		Ο
156	Broadband terahertz light source pumped by a 1Âμm picosecond laser. Applied Physics B: Lasers and Optics, 2013, 110, 321-326.	2.2	13
157	Transfer of Light Helicity to Nanostructures. Physical Review Letters, 2013, 110, 143603.	7.8	272
158	Broadband THz-wave generation by satisfying the noncollinear phase-matching condition with a reflected signal beam. Applied Optics, 2013, 52, 8305.	1.8	7
159	Direct generation of a first-Stokes vortex laser beam from a self-Raman laser. Optics Express, 2013, 21, 12401.	3.4	58
160	THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves. Optics Letters, 2013, 38, 3687.	3.3	4
161	Handedness control in a 2-μm optical vortex parametric oscillator. Optics Express, 2013, 21, 23604.	3.4	29
162	Efficient high-quality picosecond Nd:YVO_4bounce laser system. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 894.	2.1	15

#	Article	IF	CITATIONS
163	Spiral relief formation in an azo-polymer film by the irradiation of a circularly polarized optical vortex beam. , 2013, , .		1
164	Helicity control of a 2-μm optical vortex output from a vortex-pumped optical parametric oscillator. , 2013, , .		0
165	Chiral structure control of metal nano-needles fabrictaed by optical vortex laser ablation. , 2013, , .		2
166	High Power Optical Vortex Lasers and Their Application to Material Processing. The Review of Laser Engineering, 2013, 41, 708.	0.0	0
167	Measurement of thermal lensing in a CW BaWO_4 intracavity Raman laser. Optics Express, 2012, 20, 9810.	3.4	22
168	Tunable 2-μm optical vortex parametric oscillator. Optics Express, 2012, 20, 23666.	3.4	45
169	Over 25W nanosecond vortex laser based on a stressed Yb-doped fiber power amplifier. , 2012, , .		0
170	Preparation and characterization of phospholipid-conjugated indocyanine green as a near-infrared probe. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7481-7485.	2.2	35
171	Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures. Nano Letters, 2012, 12, 3645-3649.	9.1	436
172	Nano-needle fabrication based on optical vortex laser ablation. , 2012, , .		0
173	The Current Trends in SBS and phase conjugation. Laser and Particle Beams, 2012, 30, 117-174.	1.0	25
174	Recent progress of high power optical vortex laser technologies. , 2012, , .		0
175	Milli-joule level 2m vortex pulses from an optical vortex pumped optical parametric oscillator. , 2012, ,		0
176	Multicolored electrochromism in 4,4′-biphenyl dicarboxylic acid diethyl ester. Physical Chemistry Chemical Physics, 2011, 13, 11838.	2.8	31
177	Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier. Optics Express, 2011, 19, 994.	3.4	39
178	Optical vortex pumped mid-infrared optical parametric oscillator. Optics Express, 2011, 19, 12220.	3.4	49
179	Nanosecond vortex laser pulses with millijoule pulse energies from a Yb-doped double-clad fiber power amplifier. Optics Express, 2011, 19, 14420.	3.4	29
180	Dual-frequency picosecond optical parametric generator pumped by a Nd-doped vanadate bounce laser. Optics Express, 2011, 19, 18523.	3.4	25

#	Article	IF	CITATIONS
181	Sub-mJ nano-second vortex pulse generation from a stressed Yb-doped double-clad fiber amplifier. , 2011, , .		0
182	Controllable direction switching of vortex output in a Nd:YVO <inf>4</inf> bounce laser. , 2011, , .		1
183	Generation of Optical Pulses with Phase and/or Polarization Singularities and Their Applications. Hyomen Kagaku, 2011, 32, 748-754.	0.0	Ο
184	1.3-Âμm passive Q-switching of a Nd-doped mixed vanadate bounce laser in combination with a V:YAG saturable absorber. Applied Physics Β: Lasers and Optics, 2010, 101, 65-70.	2.2	8
185	Laser ablation by optical vortex beams. , 2010, , .		Ο
186	Metal nano-particles manipulation by using optical multiple vortex tweezer. Proceedings of SPIE, 2010,	0.8	0
187	Over 20W pico-second vortex output from a large-mode-area fiber MOPA system. , 2010, , .		Ο
188	Picosecond-Pulse-Pumped Distributed-Feedback Thick-Film Waveguide Blue Laser Using Fluorescent Brightener 135. Japanese Journal of Applied Physics, 2010, 49, 072105.	1.5	8
189	Metal microneedle fabricationâ€ ⁻ using twisted light with spin. Optics Express, 2010, 18, 17967.	3.4	223
190	Optical phase conjugation of picosecond pulses at 106 μm in Sn_2P_2S_6:Te for wavefront correction in high-power Nd-doped amplifier systems. Optics Express, 2010, 18, 87.	3.4	10
191	Optical-vortex laser ablation. Optics Express, 2010, 18, 2144.	3.4	208
192	25 W pico-second vortex output from a mixed-vanadate master laser and a Yb-doped fiber power amplifier. , 2010, , .		1
193	50W pico-second Nd:GdVO4 bounce laser with a phase-conjugate mirror. , 2010, , .		0
194	105 W pico-second Nd:YVO4 bounce amplifier system with a photorefractive phase conjugate mirror. , 2010, , .		0
195	Advanced Laser Technologies Based on A Functional Diffractive Optics. The Review of Laser Engineering, 2009, 37, 788-791.	0.0	0
196	Pico-second vortex output from a large-mode area fiber amplifier. , 2009, , .		0
197	Nano-particles transportation using a holographic multiple-vortex tweezer. , 2009, , .		0
198	High-power pico-second vortex laser based on a large-mode area fiber amplifier. , 2009, , .		0

12

#	Article	IF	CITATIONS
199	Highly Efficient Long-Lifetime Dual-Layered Waveguide Dye Laser Containing SiO2Nanoparticle-Dispersed Random Scattering Active Media. Japanese Journal of Applied Physics, 2009, 48, 112503.	1.5	15
200	Passive Q-switching of a diode-side-pumped Nd doped 1.3m ceramic YAG bounce laser. Optics Communications, 2009, 282, 4784-4788.	2.1	17
201	Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal. Applied Physics B: Lasers and Optics, 2009, 97, 799-804.	2.2	39
202	High power picosecond vortex laser based on a large-mode-area fiber amplifier. Optics Express, 2009, 17, 14362.	3.4	34
203	Sub-100 W picosecond output from a phase-conjugate Nd:YVO_4 bounce amplifier. Optics Express, 2009, 17, 20816.	3.4	37
204	Near-ultraviolet laser based on organic waveguide dye laser containing a random scattering active media. , 2009, , .		0
205	Laser ablation using a nanosecond optical vortex pulse. , 2009, , .		0
206	Passive Q-switching of a diode-side-pumped Nd-doped mixed gadolinium yttrium vanadate bounce laser. Applied Physics B: Lasers and Optics, 2008, 90, 445-449.	2.2	16
207	Direct production of high-power radially polarized output from a side-pumped Nd:YVO_4 bounce amplifier using a photonic crystal mirror. Optics Express, 2008, 16, 10762.	3.4	18
208	Picosecond master-oscillator, power-amplifier system based on a mixed vanadate phase conjugate bounce amplifier. Optics Express, 2008, 16, 16382.	3.4	11
209	Ultra-high-power optical vortex output from a side-pumped Nd:GdVO <inf>4</inf> bounce laser. , 2008, , .		0
210	35 MW pulses with 44 W average power from a pico-second phase-conjugate Nd:GdVO4 laser system. , 2008, , .		0
211	Ultra-fast phase conjugate laser system. , 2007, , .		0
212	Compact continuous-wave yellow laser based on a self-stimulating Raman Nd:YVO4 laser. , 2007, , WB19.		1
213	Highly efficient pico-second waveguide dye laser based on a random active medium. , 2007, , .		0
214	ãf¬ãf¼ã,¶ãf¼å‰æ³¢é¢å^¶å¾¡æŠ€è¡"ãëœå‰åååðŽææ–™ãã®å¿œç". Kobunshi, 2007, 56, 501-504.	0.0	0
215	Measurement of Contrast Transfer Function in Super-Resolution Microscopy Using Two-Color Fluorescence Dip Spectroscopy. Applied Spectroscopy, 2007, 61, 6-10.	2.2	12
216	Direct generation of high power Laguerre–Gaussian output from a diode-pumped Nd:YVO_4 1.3-μm bounce laser. Optics Express, 2007, 15, 7616.	3.4	79

#	Article	IF	CITATIONS
217	MW ps pulse generation at sub-MHz repetition rates from a phase conjugate Nd:YVO_4 bounce amplifier. Optics Express, 2007, 15, 9123.	3.4	44
218	Birefringence generation mechanism in a fiber Fabry-Perot etalon buried in a fiber connector housing. Electronics and Communications in Japan, 2007, 90, 56-62.	0.1	0
219	Thermal-lens measurement in a side-pumped 1.31 ¹ /4m Nd:YVO4 bounce laser. Optics Communications, 2007, 277, 125-129.	2.1	11
220	High quality, high power pico-second laser system with a phase conjugate mirror. The Review of Laser Engineering, 2007, 35, 58-59.	0.0	0
221	Highly efficient phase-conjugation of a pico-second 1μm Laguerre-Gaussian beam. , 2006, , .		Ο
222	High-peak power output from a waveguide dye laser based on a random active layer. , 2006, , .		0
223	Highly efficient phase-conjugation of a 1 µm pico-second Laguerre-Gaussian beam. Optics Express, 2006, 14, 2250.	3.4	15
224	High repetition rate Q-switching performance in transversely diode-pumped Nd doped mixed gadolinium yttrium vanadate bounce laser. Optics Express, 2006, 14, 2727.	3.4	32
225	Over 40-watt diffraction-limited Q-switched output from neodymium-doped YAG ceramic bounce amplifiers. Optics Express, 2006, 14, 8198.	3.4	21
226	Highly efficient 1181nm output from a transversely diode-pumped Nd3+:KGd(WO4)2 self-stimulating Raman laser. Optics Communications, 2006, 260, 675-679.	2.1	14
227	Preparation of a hologram composed of a striped gold layer using photographic materials. Journal of Applied Physics, 2006, 100, 013102.	2.5	2
228	Self-diffraction of a femto-second Laguerre-Gaussian beam in a dye polymer. , 2006, , .		0
229	>100kHz Q-switched operation in transversely diode-pumped ceramic Nd3+:YAG laser in bounce geometry. Optics Communications, 2005, 249, 531-537.	2.1	30
230	Waveguide dye laser including a SiO2 nanoparticle-dispersed random scattering active layer. Applied Physics Letters, 2005, 86, 151123.	3.3	38
231	Two-Point Separation in Far-Field Super-Resolution Fluorescence Microscopy Based on Two-Color Fluorescence Dip Spectroscopy, Part I: Experimental Evaluation. Applied Spectroscopy, 2005, 59, 868-872.	2.2	5
232	Phase conjugation of pico-second pulses by four wave mixing in a Nd:YVO4 slab amplifier. Optics Express, 2005, 13, 3506.	3.4	4
233	Heat generation in Nd doped vanadate crystals with 1.34 μm laser action. Optics Express, 2005, 13, 4909.	3.4	32
234	Power scaling of highly neodymium-doped YAG ceramic lasers with a bounce amplifier geometry. Optics Express, 2005, 13, 7011.	3.4	17

#	Article	IF	CITATIONS
235	Over 10-watt pico-second diffraction-limited output from a Nd:YVO4 slab amplifier with a phase conjugate mirror. Optics Express, 2005, 13, 8993.	3.4	28
236	Characterization of a Pico-Second Phase Conjugate Nd:YVO4Laser System. Japanese Journal of Applied Physics, 2004, 43, 2515-2518.	1.5	13
237	Formation of nano-dots of phenylazomethine dendrimers with Rhodamine 6G on mica. Polymers for Advanced Technologies, 2004, 15, 159-163.	3.2	10
238	Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser. Optics Communications, 2004, 232, 327-331.	2.1	35
239	Efficient frequency extension of a diode-side-pumped Nd:YAG laser by intracavity SRS in crystalline materials. Optics Communications, 2004, 242, 575-579.	2.1	10
240	Au-nano-particles production by pico-second ultra-violet laser deposition in Au-ion doped PMMA film. Chemical Physics Letters, 2004, 390, 166-169.	2.6	16
241	Efficient phase conjugation by pico-second four-wave-mixing in solid-dye amplifier. Optics Express, 2004, 12, 1243.	3.4	3
242	Two-Point-Separation in Far-Field Super-Resolution Fluorescence Microscopy Based on Two-Color Fluorescence Dip Spectroscopy. Hyomen Kagaku, 2004, 25, 466-472.	0.0	0
243	Two-color far-field super-resolution microscope using a doughnut beam. Chemical Physics Letters, 2003, 371, 634-639.	2.6	41
244	Investigation of the fluorescence depletion process in the condensed phase; application to a tryptophan aqueous solution. Chemical Physics Letters, 2003, 372, 773-778.	2.6	30
245	Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram. Optics Communications, 2003, 228, 279-283.	2.1	16
246	Predicted Spatial Resolution of Super-Resolving Fluorescence Microscopy Using Two-Color Fluorescence Dip Spectroscopy. Applied Spectroscopy, 2003, 57, 1312-1316.	2.2	19
247	Polarization state fixer composed of passive optical devices. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2003, 20, 342.	1.5	3
248	Efficient self-pumped phase conjugation with a loop geometry in a Rhodamine-6G solid dye laser amplifier. Optics Express, 2003, 11, 176.	3.4	5
249	Two-point-separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique. Optics Express, 2003, 11, 3271.	3.4	80
250	Self-stimulating, Transversely Diode-pumped Nd3+: PbWO4 yellow laser. , 2003, , 21.		0
251	Diffraction Efficiency of Holographic Grating Formed in Au Nano particle-Doped Sol–Gel Silica Film by Laser Irradiation. Japanese Journal of Applied Physics, 2003, 42, 1288-1289.	1.5	16
252	High Quality 7.5 W Continuous-Wave Operation of a Nd:YVO4Laser with a Rh:BaTiO3Phase Conjugate Mirror. Japanese Journal of Applied Physics, 2002, 41, 2024-2027.	1.5	8

Takashige Omatsu

#	Article	IF	CITATIONS
253	A Novel Phase Conjugate Broad-Stripe Diode Laser with an External Ring Geometry. Japanese Journal of Applied Physics, 2002, 41, 606-608.	1.5	3
254	Characterization of an axisymmetric birefringent optical fiber. , 2002, 4920, 510.		0
255	Spatial Resolution Enhancement in BOTDR by Spectrum Separation Method. Optical Review, 2002, 9, 49-53.	2.0	12
256	Self-diffraction of pico-second pulses in a saturable amplifier polymer dye. Optics Communications, 2002, 206, 165-170.	2.1	2
257	Thermal conductivity of a self-frequency-doubling laser crystal measured by use of optical methods. Applied Optics, 2001, 40, 1372.	2.1	4
258	Influence of laser action on thermal loading in diode-pumped Nd:YVO4 , 2001, , ME17.		1
259	Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser. Optics Communications, 2001, 194, 401-407.	2.1	125
260	Vectorial phase conjugator by degenerated four-wave mixing in a laser-pumped polymer dye amplifier. Optics Communications, 2001, 199, 215-222.	2.1	2
261	Yb:YAl3(B03)4: an efficient green self-frequency-doubled laser source. , 2001, , WA3.		2
262	Tunable phase conjugation by intracavity degenerate four-wave mixing in an injection-seeded solid dye laser. Optics Letters, 2000, 25, 1267.	3.3	6
263	Suppression of Self-Frequency-Scanning and Brightness Improvement of a Broad-Stripe Laser Diode using Phase Conjugate Feedback. Japanese Journal of Applied Physics, 1999, 38, 3522-3525.	1.5	4
264	Quantitative Measurement of Thermal Lens in Diode-Laser Pumped Self-Frequency-Doubled Nd,Lu:YAl3(BO3)4Laser under Lasing and Non-Lasing Conditions. Japanese Journal of Applied Physics, 1999, 38, 6335-6339.	1.5	3
265	Modal Power Analysis for Two-Mode Fibers Illuminated by an Offset Beam Based on Near Field Pattern Measurement. Optical Review, 1999, 6, 330-333.	2.0	5
266	Highly efficient degenerate four-wave mixing with multipass geometries in a polymer laser dye saturable amplifier. Optics Letters, 1999, 24, 1620.	3.3	15
267	<title>Thermal transmission characteristics of a set of fiber Fabry-Perot etalons designed for an optical FDM system integrated for broadcasting and communication</title> ., 1999,,.		0
268	Influence of laser action on thermal loading in diode-pumped Nd:YVO4. , 1999, , .		0
269	Investigation of photorefractive phase conjugate feedback on the lasing spectrum of a broad-stripe laser diode. Optics Communications, 1998, 146, 167-172.	2.1	15
270	Injection locking of a broad-area diode laser through a double phase-conjugate mirror. Optics Communications, 1998, 146, 6-10.	2.1	28

#	Article	IF	CITATIONS
271	Tunable, visible phase conjugator with a saturable-amplifier polymer laser dye. Optics Letters, 1998, 23, 1432.	3.3	12
272	Thermal lensing measurements in line-focus end-pumped neodymium yttrium aluminium garnet using holographic lateral shearing interferometry. Journal of Applied Physics, 1998, 83, 2901-2906.	2.5	41
273	<title>Self-adaptive external resonator for second-harmonic generation in laser-diode-pumped NYAB laser using photorefractive phase conjugate feedback</title> . , 1998, 3554, 191.		0
274	<title>Improvement of the oscillation mode of the broad-area diode lasers by injection locking with photorefractive mutually pumped phase conjugators</title> . , 1998, 3554, 133.		0
275	Measurements of thermal lensing in line-focus end-pumped Nd:YAG slabs. , 1998, , .		1
276	Transient thermal lensing measurement in a laser diode pumped NdxY1â^'xAl3(BO3)4 laser using a holographic shearing interferometer. Optics Communications, 1997, 140, 237-241.	2.1	14
277	<title>Longitudinal single-mode operation of broad-stripe laser diode using a photorefractive phase conjugator</title> . , 1996, 2896, 110.		1
278	High Sensitive Detection of Trace Gases Using Optical Heterodyne Method with a High Finesse Intra-Cavity Resonator. Optical Review, 1996, 3, 243-250.	2.0	9
279	Thermal effects in laser diode pumped self-frequency-doubled NdxY1â^'xAl3(BO3)4(NYAB) microchip laser. Optics Communications, 1995, 118, 302-308.	2.1	43
280	Second Harmonic Generation of a Copper Vapor Laser Using an Anamorphic Optical System. Japanese Journal of Applied Physics, 1994, 33, 4903-4904.	1.5	3
281	Intra-pulse decrease of M2 of a copper vapor laser beam. Optics Communications, 1993, 101, 199-204.	2.1	5
282	Saturation of the conversion efficiency of second harmonic generation of a copper vapor laser. Optics Communications, 1993, 97, 65-68.	2.1	5
283	Evolution of the spatial coherence in a copper vapor laser. Optics Communications, 1992, 92, 50-56.	2.1	5
284	Parametric Study On The Second Harmonic Generation Of A Copper Vapor Laser. Proceedings of SPIE, 1989, 1041, 60.	0.8	6
285	Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram. , 0, , .		0
286	Optical-fiber laser produces high-power vortex output. SPIE Newsroom, 0, , .	0.1	0
287	Optical Vortices Illumination Enables the Creation of Chiral Nanostructures. , 0, , .		3
288	Direct Generation of Vortex Laser Beams and Their Non-Linear Wavelength Conversion. , 0, , .		2

#	Article	IF	CITATIONS
289	Microfabrication of Au Film Using Optical Vortex Beam. Journal of Laser Micro Nanoengineering, 0, , .	0.1	1