Takashige Omatsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9002336/publications.pdf

Version: 2024-02-01

289 papers 4,395 citations

147801 31 h-index 138484 58 g-index

292 all docs

292 docs citations

times ranked

292

2283 citing authors

#	Article	lF	CITATIONS
1	Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures. Nano Letters, 2012, 12, 3645-3649.	9.1	436
2	Transfer of Light Helicity to Nanostructures. Physical Review Letters, 2013, 110, 143603.	7.8	272
3	Metal microneedle fabrication using twisted light with spin. Optics Express, 2010, 18, 17967.	3.4	223
4	Optical-vortex laser ablation. Optics Express, 2010, 18, 2144.	3.4	208
5	Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser. Optics Communications, 2001, 194, 401-407.	2.1	125
6	Light induced conch-shaped relief in an azo-polymer film. Scientific Reports, 2014, 4, 4281.	3.3	113
7	Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle. Scientific Reports, 2016, 6, 21738.	3.3	106
8	A New Twist for Materials Science: The Formation of Chiral Structures Using the Angular Momentum of Light. Advanced Optical Materials, 2019, 7, 1801672.	7.3	89
9	Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate. Applied Physics Letters, 2014, 104, .	3.3	83
10	Wavelength-versatile optical vortex lasers. Journal of Optics (United Kingdom), 2017, 19, 123002.	2.2	82
11	Two-point-separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique. Optics Express, 2003, 11, 3271.	3.4	80
12	Direct generation of high power Laguerre–Gaussian output from a diode-pumped Nd:YVO_4 1.3-μm bounce laser. Optics Express, 2007, 15, 7616.	3.4	79
13	Direct generation of a first-Stokes vortex laser beam from a self-Raman laser. Optics Express, 2013, 21, 12401.	3.4	58
14	Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination. Applied Physics Letters, 2016, 108, .	3.3	54
15	Optical vortex pumped mid-infrared optical parametric oscillator. Optics Express, 2011, 19, 12220.	3.4	49
16	Tunable 2-μm optical vortex parametric oscillator. Optics Express, 2012, 20, 23666.	3.4	45
17	MW ps pulse generation at sub-MHz repetition rates from a phase conjugate Nd:YVO_4 bounce amplifier. Optics Express, 2007, 15, 9123.	3.4	44
18	Thermal effects in laser diode pumped self-frequency-doubled NdxY1â^'xAl3(BO3)4(NYAB) microchip laser. Optics Communications, 1995, 118, 302-308.	2.1	43

#	Article	IF	Citations
19	Thermal lensing measurements in line-focus end-pumped neodymium yttrium aluminium garnet using holographic lateral shearing interferometry. Journal of Applied Physics, 1998, 83, 2901-2906.	2.5	41
20	Two-color far-field super-resolution microscope using a doughnut beam. Chemical Physics Letters, 2003, 371, 634-639.	2.6	41
21	Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal. Applied Physics B: Lasers and Optics, 2009, 97, 799-804.	2.2	39
22	Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier. Optics Express, 2011, 19, 994.	3.4	39
23	An intracavity, frequency-doubled self-Raman vortex laser. Optics Express, 2014, 22, 5400.	3.4	39
24	Waveguide dye laser including a SiO2 nanoparticle-dispersed random scattering active layer. Applied Physics Letters, 2005, 86, 151123.	3.3	38
25	Sub-100 W picosecond output from a phase-conjugate Nd:YVO_4 bounce amplifier. Optics Express, 2009, 17, 20816.	3.4	37
26	Direct generation of red and orange optical vortex beams from an off-axis diode-pumped Pr ³⁺ :YLF laser. Optics Express, 2019, 27, 18190.	3.4	36
27	Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser. Optics Communications, 2004, 232, 327-331.	2.1	35
28	Preparation and characterization of phospholipid-conjugated indocyanine green as a near-infrared probe. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7481-7485.	2.2	35
29	High power picosecond vortex laser based on a large-mode-area fiber amplifier. Optics Express, 2009, 17, 14362.	3.4	34
30	Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate. Scientific Reports, 2016, 6, 38880.	3.3	33
31	Photopolymerization with Light Fields Possessing Orbital Angular Momentum: Generation of Helical Microfibers. ACS Photonics, 2018, 5, 4156-4163.	6.6	33
32	Heat generation in Nd doped vanadate crystals with 1.34 μm laser action. Optics Express, 2005, 13, 4909.	3.4	32
33	High repetition rate Q-switching performance in transversely diode-pumped Nd doped mixed gadolinium yttrium vanadate bounce laser. Optics Express, 2006, 14, 2727.	3.4	32
34	Azo-polymer film twisted to form a helical surface relief by illumination with a circularly polarized Gaussian beam. Optics Express, 2017, 25, 12499.	3.4	32
35	Multicolored electrochromism in 4,4′-biphenyl dicarboxylic acid diethyl ester. Physical Chemistry Chemical Physics, 2011, 13, 11838.	2.8	31
36	Tunable mid-infrared (63–12 μm)optical vortex pulse generation. Optics Express, 2014, 22, 26351.	3.4	31

#	Article	IF	Citations
37	Investigation of the fluorescence depletion process in the condensed phase; application to a tryptophan aqueous solution. Chemical Physics Letters, 2003, 372, 773-778.	2.6	30
38	>100kHz Q-switched operation in transversely diode-pumped ceramic Nd3+:YAG laser in bounce geometry. Optics Communications, 2005, 249, 531-537.	2.1	30
39	Nanosecond vortex laser pulses with millijoule pulse energies from a Yb-doped double-clad fiber power amplifier. Optics Express, 2011, 19, 14420.	3.4	29
40	Handedness control in a 2-Î1/4m optical vortex parametric oscillator. Optics Express, 2013, 21, 23604.	3.4	29
41	Plasmonic Manipulation-Controlled Chiral Crystallization of Sodium Chlorate. Journal of Physical Chemistry Letters, 2020, 11, 4422-4426.	4.6	29
42	Generation of high-quality terahertz OAM mode based on soft-aperture difference frequency generation. Optics Express, 2019, 27, 31840.	3.4	29
43	Injection locking of a broad-area diode laser through a double phase-conjugate mirror. Optics Communications, 1998, 146, 6-10.	2.1	28
44	Over 10-watt pico-second diffraction-limited output from a Nd:YVO4 slab amplifier with a phase conjugate mirror. Optics Express, 2005, 13, 8993.	3.4	28
45	Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1063-1068.	1.8	28
46	Nanoscale chiral surface relief of azo-polymers with nearfield OAM light. Optics Express, 2018, 26, 22197.	3.4	28
47	Dual-frequency picosecond optical parametric generator pumped by a Nd-doped vanadate bounce laser. Optics Express, 2011, 19, 18523.	3.4	25
48	The Current Trends in SBS and phase conjugation. Laser and Particle Beams, 2012, 30, 117-174.	1.0	25
49	Widely-tunable vortex output from a singly resonant optical parametric oscillator. Optics Express, 2015, 23, 18338.	3.4	24
50	Laguerre-Gaussian beam generation via enhanced intracavity spherical aberration. Optics Express, 2021, 29, 27783.	3.4	24
51	Direct generation of 523â€nm orbital Poincaré mode from a diode-pumped Pr ³⁺ :LiYF ₄ laser with an off-axis optical needle pumping geometry. Optics Express, 2021, 29, 30409.	3.4	24
52	Chirogenesis and Amplification of Molecular Chirality Using Optical Vortices. Angewandte Chemie - International Edition, 2021, 60, 12819-12823.	13.8	23
53	Broadband high-resolution terahertz single-pixel imaging. Optics Express, 2020, 28, 28868.	3.4	23
54	Measurement of thermal lensing in a CW BaWO_4 intracavity Raman laser. Optics Express, 2012, 20, 9810.	3.4	22

#	Article	IF	CITATIONS
55	Over 40-watt diffraction-limited Q-switched output from neodymium-doped YAG ceramic bounce amplifiers. Optics Express, 2006, 14, 8198.	3.4	21
56	Handedness control in a tunable midinfrared (60–125  Î⅓m) vortex laser. Journal of the Optical Society America B: Optical Physics, 2015, 32, 2406.	y <u>o</u> f 2.1	21
57	Predicted Spatial Resolution of Super-Resolving Fluorescence Microscopy Using Two-Color Fluorescence Dip Spectroscopy. Applied Spectroscopy, 2003, 57, 1312-1316.	2.2	19
58	"Freezing―of NaClO ₃ Metastable Crystalline State by Optical Trapping in Unsaturated Microdroplet. Crystal Growth and Design, 2018, 18, 734-741.	3.0	19
59	Photopolymerization with high-order Bessel light beams. Optics Letters, 2020, 45, 4080.	3.3	19
60	Direct production of high-power radially polarized output from a side-pumped Nd:YVO_4 bounce amplifier using a photonic crystal mirror. Optics Express, 2008, 16, 10762.	3.4	18
61	Octave-band tunable optical vortex parametric oscillator. Optics Express, 2016, 24, 15204.	3.4	18
62	Interparticle-Interaction-Mediated Anomalous Acceleration of Nanoparticles under Light-Field with Coupled Orbital and Spin Angular Momentum. Nano Letters, 2019, 19, 4873-4878.	9.1	18
63	Ultraviolet intracavity frequency-doubled Pr3+:LiYF4 orbital Poincaré laser. Optics Express, 2020, 28, 37397.	3.4	18
64	Optical vortex-induced forward mass transfer: manifestation of helical trajectory of optical vortex. Optics Express, 2019, 27, 38019.	3.4	18
65	Power scaling of highly neodymium-doped YAG ceramic lasers with a bounce amplifier geometry. Optics Express, 2005, 13, 7011.	3.4	17
66	Passive Q-switching of a diode-side-pumped Nd doped 1.3m ceramic YAG bounce laser. Optics Communications, 2009, 282, 4784-4788.	2.1	17
67	Direct generation of 1108 nm and 1173 nm Laguerre-Gaussian modes from a self-Raman Nd:GdVO ₄ laser. Optics Express, 2020, 28, 24095.	3.4	17
68	Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram. Optics Communications, 2003, 228, 279-283.	2.1	16
69	Diffraction Efficiency of Holographic Grating Formed in Au Nano particle-Doped Sol–Gel Silica Film by Laser Irradiation. Japanese Journal of Applied Physics, 2003, 42, 1288-1289.	1.5	16
70	Au-nano-particles production by pico-second ultra-violet laser deposition in Au-ion doped PMMA film. Chemical Physics Letters, 2004, 390, 166-169.	2.6	16
71	Passive Q-switching of a diode-side-pumped Nd-doped mixed gadolinium yttrium vanadate bounce laser. Applied Physics B: Lasers and Optics, 2008, 90, 445-449.	2.2	16
72	Optical vortex lattice mode generation from a diode-pumped Pr ³⁺ :LiYF ₄ laser. Journal of Optics (United Kingdom), 2021, 23, 075502.	2.2	16

#	Article	IF	CITATIONS
73	Investigation of photorefractive phase conjugate feedback on the lasing spectrum of a broad-stripe laser diode. Optics Communications, 1998, 146, 167-172.	2.1	15
74	Highly efficient degenerate four-wave mixing with multipass geometries in a polymer laser dye saturable amplifier. Optics Letters, 1999, 24, 1620.	3.3	15
75	Highly efficient phase-conjugation of a 1 µm pico-second Laguerre-Gaussian beam. Optics Express, 2006, 14, 2250.	3.4	15
76	Highly Efficient Long-Lifetime Dual-Layered Waveguide Dye Laser Containing SiO2Nanoparticle-Dispersed Random Scattering Active Media. Japanese Journal of Applied Physics, 2009, 48, 112503.	1.5	15
77	Efficient high-quality picosecond Nd:YVO_4bounce laser system. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 894.	2.1	15
78	Ultraviolet vortex generation using periodically bonded \hat{l}^2 -BaB_2O_4 device. Optics Express, 2014, 22, 12829.	3.4	15
79	Plasmonic Heating-Assisted Laser-Induced Crystallization from a NaClO ₃ Unsaturated Mother Solution. Crystal Growth and Design, 2017, 17, 809-818.	3.0	15
80	Twisted mass transport enabled by the angular momentum of light. Journal of Nanophotonics, 2020, 14, 1.	1.0	15
81	Transient thermal lensing measurement in a laser diode pumped NdxY1â^'xAl3(BO3)4 laser using a holographic shearing interferometer. Optics Communications, 1997, 140, 237-241.	2.1	14
82	Highly efficient 1181nm output from a transversely diode-pumped Nd3+:KGd(WO4)2 self-stimulating Raman laser. Optics Communications, 2006, 260, 675-679.	2.1	14
83	Tunable near- and mid-infrared (1.36–1.63 <i>Âμ</i> m and 3.07–4.81 <i>Âμ</i> m) optical vortex laser source. Laser Physics Letters, 2020, 17, 045402.	1.4	14
84	Generation of hexagonal close-packed ring-shaped structures using an optical vortex. Nanophotonics, 2022, 11, 855-864.	6.0	14
85	Intracavity spherical aberration for selective generation of single-transverse-mode Laguerre-Gaussian output with order up to 95. PhotoniX, 2022, 3, .	13.5	14
86	Characterization of a Pico-Second Phase Conjugate Nd:YVO4Laser System. Japanese Journal of Applied Physics, 2004, 43, 2515-2518.	1.5	13
87	Broadband terahertz light source pumped by a 1Âμm picosecond laser. Applied Physics B: Lasers and Optics, 2013, 110, 321-326.	2.2	13
88	Terahertz wave generation using type II phase matching polarization combination via difference frequency generation with LiNbO ₃ . Japanese Journal of Applied Physics, 2015, 54, 062202.	1.5	13
89	Purity and efficiency of hybrid orbital angular momentum-generating metasurfaces. Journal of Nanophotonics, 2020, 14, 1.	1.0	13
90	Tunable, visible phase conjugator with a saturable-amplifier polymer laser dye. Optics Letters, 1998, 23, 1432.	3.3	12

#	Article	IF	CITATIONS
91	Spatial Resolution Enhancement in BOTDR by Spectrum Separation Method. Optical Review, 2002, 9, 49-53.	2.0	12
92	Measurement of Contrast Transfer Function in Super-Resolution Microscopy Using Two-Color Fluorescence Dip Spectroscopy. Applied Spectroscopy, 2007, 61, 6-10.	2.2	12
93	Terahertz Phonon Modes of Highly Efficient Electro-optic Phenyltriene OH1 Crystals. Journal of Physical Chemistry C, 2016, 120, 24360-24369.	3.1	12
94	A continuous-wave vortex Raman laser with sum frequency generation. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	12
95	Generating laser transverse modes analogous to quantum Green's functions of two-dimensional harmonic oscillators. Photonics Research, 2017, 5, 733.	7.0	12
96	Picosecond optical vortex-induced chiral surface relief in an azo-polymer film. Journal of Nanophotonics, 2020, 14, 1.	1.0	12
97	Thermal-lens measurement in a side-pumped 1.3μm Nd:YVO4 bounce laser. Optics Communications, 2007, 277, 125-129.	2.1	11
98	Picosecond master-oscillator, power-amplifier system based on a mixed vanadate phase conjugate bounce amplifier. Optics Express, 2008, 16, 16382.	3.4	11
99	Frequency-doubling of an optical vortex output from a stressed Yb-doped fiber amplifier. Applied Physics B: Lasers and Optics, 2014, 116, 249-254.	2.2	11
100	Exploring the self-mode locking and vortex structures of nonplanar elliptical modes in selectively end-pumped Nd:YVO_4 lasers: manifestation of large fractional orbital angular momentum. Optics Express, 2017, 25, 22769.	3.4	11
101	Ultra-widely tunable mid-infrared (6–18  μm) optical vortex source. Applied Optics, 2018, 57, 620.	1.8	11
102	Plasmonic Trapping-Induced Crystallization of Acetaminophen. Crystal Growth and Design, 2019, 19, 529-537.	3.0	11
103	Near and mid-infrared optical vortex parametric oscillator based on KTA. Scientific Reports, 2021, 11, 8013.	3.3	11
104	Investigation of laser-induced-metal phase of MoTe ₂ and its contact property via scanning gate microscopy. Nanotechnology, 2020, 31, 205205.	2.6	11
105	Formation of nano-dots of phenylazomethine dendrimers with Rhodamine 6G on mica. Polymers for Advanced Technologies, 2004, 15, 159-163.	3.2	10
106	Efficient frequency extension of a diode-side-pumped Nd:YAG laser by intracavity SRS in crystalline materials. Optics Communications, 2004, 242, 575-579.	2.1	10
107	Optical phase conjugation of picosecond pulses at 106 $\hat{l}\frac{1}{4}$ m in Sn_2P_2S_6:Te for wavefront correction in high-power Nd-doped amplifier systems. Optics Express, 2010, 18, 87.	3.4	10
108	Focus issue introduction: synergy of structured light and structured materials. Optics Express, 2017, 25, 16681.	3.4	10

#	Article	IF	Citations
109	In Situ Observation of Chiral Symmetry Breaking in NaClO ₃ Chiral Crystallization Realized by Thermoplasmonic Micro-Stirring. Crystal Growth and Design, 2018, 18, 4230-4239.	3.0	10
110	High Sensitive Detection of Trace Gases Using Optical Heterodyne Method with a High Finesse Intra-Cavity Resonator. Optical Review, 1996, 3, 243-250.	2.0	9
111	High average power, diffraction-limited picosecond output from a sapphire face-cooled Nd:YVO_4 slab amplifier. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 714.	2.1	9
112	Bottle beam generation from a frequency-doubled Nd:YVO4 laser. Scientific Reports, 2018, 8, 16576.	3.3	9
113	Tunable 3 µm optical vortex parametric oscillator. Japanese Journal of Applied Physics, 2018, 57, 122701.	1.5	9
114	Nanotwist of aluminum with irradiation of a single optical vortex pulse. OSA Continuum, 2021, 4, 403.	1.8	9
115	Optical vortex-induced forward mass transfer: manifestation of helical trajectory of optical vortex. Optics Express, 2019, 27, 38019.	3.4	9
116	Laser-induced forward-transfer with light possessing orbital angular momentum. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 52, 100535.	11.6	9
117	High Quality 7.5 W Continuous-Wave Operation of a Nd:YVO4Laser with a Rh:BaTiO3Phase Conjugate Mirror. Japanese Journal of Applied Physics, 2002, 41, 2024-2027.	1.5	8
118	1.3-µm passive Q-switching of a Nd-doped mixed vanadate bounce laser in combination with a V:YAG saturable absorber. Applied Physics B: Lasers and Optics, 2010, 101, 65-70.	2.2	8
119	Picosecond-Pulse-Pumped Distributed-Feedback Thick-Film Waveguide Blue Laser Using Fluorescent Brightener 135. Japanese Journal of Applied Physics, 2010, 49, 072105.	1.5	8
120	Tunable near-infrared optical vortex parametric laser with versatile orbital angular momentum states. Applied Optics, 2018, 57, 10004.	1.8	8
121	Broadband THz-wave generation by satisfying the noncollinear phase-matching condition with a reflected signal beam. Applied Optics, 2013, 52, 8305.	1.8	7
122	Evaluation of polarized terahertz waves generated by Cherenkov phase matching. Applied Optics, 2014, 53, 1518.	1.8	7
123	Beam propagation of efficient frequency-doubled optical vortices. Applied Optics, 2016, 55, 5263.	2.1	7
124	Plasmonic Manipulation of Sodium Chlorate Chiral Crystallization: Directed Chirality Transfer via Contact-Induced Polymorphic Transformation and Formation of Liquid Precursor. Crystal Growth and Design, 2020, 20, 5493-5507.	3.0	7
125	Parametric Study On The Second Harmonic Generation Of A Copper Vapor Laser. Proceedings of SPIE, 1989, 1041, 60.	0.8	6
126	Tunable phase conjugation by intracavity degenerate four-wave mixing in an injection-seeded solid dye laser. Optics Letters, 2000, 25, 1267.	3.3	6

#	Article	IF	CITATIONS
127	Ultra-broadband tunable (0.67–2.57 Âμm) optical vortex parametric oscillator. Japanese Journal of Applied Physics, 2017, 56, 102701.	1.5	6
128	Microneedle structuring of $Si(111)$ by irradiation with picosecond optical vortex pulses. Applied Physics Express, 2020, 13, 062006.	2.4	6
129	Optical vortex array for two-dimensional exclusive-OR operation. Applied Physics B: Lasers and Optics, 2022, 128, .	2.2	6
130	Evolution of the spatial coherence in a copper vapor laser. Optics Communications, 1992, 92, 50-56.	2.1	5
131	Intra-pulse decrease of M2 of a copper vapor laser beam. Optics Communications, 1993, 101, 199-204.	2.1	5
132	Saturation of the conversion efficiency of second harmonic generation of a copper vapor laser. Optics Communications, 1993, 97, 65-68.	2.1	5
133	Modal Power Analysis for Two-Mode Fibers Illuminated by an Offset Beam Based on Near Field Pattern Measurement. Optical Review, 1999, 6, 330-333.	2.0	5
134	Efficient self-pumped phase conjugation with a loop geometry in a Rhodamine-6G solid dye laser amplifier. Optics Express, 2003, 11, 176.	3.4	5
135	Two-Point Separation in Far-Field Super-Resolution Fluorescence Microscopy Based on Two-Color Fluorescence Dip Spectroscopy, Part I: Experimental Evaluation. Applied Spectroscopy, 2005, 59, 868-872.	2.2	5
136	Terahertz bolometric detection by thermal noise in graphene field effect transistor. Applied Physics Letters, 2015, 107, .	3.3	5
137	Power-scalable and high-speed orbital angular momentum modulator. Japanese Journal of Applied Physics, 2019, 58, 032009.	1.5	5
138	Chirogenesis and Amplification of Molecular Chirality Using Optical Vortices. Angewandte Chemie, 2021, 133, 12929-12933.	2.0	5
139	Generation of coupled orbital angular momentum modes from an optical vortex parametric laser source. Optics Express, 2019, 27, 37025.	3.4	5
140	Tunable terahertz Bessel beams with orbital angular momentum. , 2022, 1, 633.		5
141	Suppression of Self-Frequency-Scanning and Brightness Improvement of a Broad-Stripe Laser Diode using Phase Conjugate Feedback. Japanese Journal of Applied Physics, 1999, 38, 3522-3525.	1.5	4
142	Thermal conductivity of a self-frequency-doubling laser crystal measured by use of optical methods. Applied Optics, 2001, 40, 1372.	2.1	4
143	Phase conjugation of pico-second pulses by four wave mixing in a Nd:YVO4 slab amplifier. Optics Express, 2005, 13, 3506.	3.4	4
144	THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves. Optics Letters, 2013, 38, 3687.	3.3	4

#	Article	IF	Citations
145	Propagation-invariant vortex Airy beam whose singular pointÂfollows its main lobe. New Journal of Physics, 2021, 23, 113043.	2.9	4
146	Second Harmonic Generation of a Copper Vapor Laser Using an Anamorphic Optical System. Japanese Journal of Applied Physics, 1994, 33, 4903-4904.	1.5	3
147	Quantitative Measurement of Thermal Lens in Diode-Laser Pumped Self-Frequency-Doubled Nd,Lu:YAl3(BO3)4Laser under Lasing and Non-Lasing Conditions. Japanese Journal of Applied Physics, 1999, 38, 6335-6339.	1.5	3
148	A Novel Phase Conjugate Broad-Stripe Diode Laser with an External Ring Geometry. Japanese Journal of Applied Physics, 2002, 41, 606-608.	1.5	3
149	Polarization state fixer composed of passive optical devices. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2003, 20, 342.	1.5	3
150	Efficient phase conjugation by pico-second four-wave-mixing in solid-dye amplifier. Optics Express, 2004, 12, 1243.	3.4	3
151	GR-FET application for high-frequency detection device. Nanoscale Research Letters, 2013, 8, 22.	5.7	3
152	Ultraviolet optical vortex generation using a pair of \hat{l}^2 -BaB_2O_4 crystals with inverted orientations. Applied Optics, 2017, 56, 8075.	1.8	3
153	Optical Vortices Illumination Enables the Creation of Chiral Nanostructures. , 0, , .		3
154	In Situ Microscopic Observation on Surface Kinetics in Optical Trapping-Induced Crystal Growth: Step Formation, Wetting Transition, and Nonclassical Growth. Crystal Growth and Design, 2019, 19, 4138-4150.	3.0	3
155	Symmetry Breaking of Optical Vortex in Bacteriorhodopsin Suspensions. , 2019, , .		3
156	Direct Generation of Vortex Lattice Modes from an Intracavity Frequency Doubled Pr:YLF laser. , 2021, , .		3
157	Tunable 2.3–3 μm optical vortex parametric laser. Laser Physics, 2022, 32, 045001.	1.2	3
158	Vectorial phase conjugator by degenerated four-wave mixing in a laser-pumped polymer dye amplifier. Optics Communications, 2001, 199, 215-222.	2.1	2
159	Yb:YAl3(B03)4: an efficient green self-frequency-doubled laser source. , 2001, , WA3.		2
160	Self-diffraction of pico-second pulses in a saturable amplifier polymer dye. Optics Communications, 2002, 206, 165-170.	2.1	2
161	Preparation of a hologram composed of a striped gold layer using photographic materials. Journal of Applied Physics, 2006, 100, 013102.	2.5	2
162	Chiral structure control of metal nano-needles fabrictaed by optical vortex laser ablation. , 2013, , .		2

#	Article	IF	CITATIONS
163	Real-time terahertz wave sensing via infrared detection interacted with evanescent terahertz waves. Optical Review, 2015, 22, 166-169.	2.0	2
164	Direct Generation of Vortex Laser Beams and Their Non-Linear Wavelength Conversion. , 0, , .		2
165	Feature issue introduction: Topological Photonics and Materials. Optics Express, 2018, 26, 25507.	3.4	2
166	Twisted Materials: A New Twist for Materials Science: The Formation of Chiral Structures Using the Angular Momentum of Light (Advanced Optical Materials 14/2019). Advanced Optical Materials, 2019, 7, 1970052.	7.3	2
167	Dynamics analysis of nanoparticles optically driven by a Laguerre-Gaussian beam with optical spin. Journal of Physics: Conference Series, 2019, 1220, 012008.	0.4	2
168	Shrinking optical vortex to the nanoscale. , 2018, , .		2
169	Cascaded vector vortex mode generation from a solid-state Raman laser. Applied Optics, 2021, 60, 10638-10642.	1.8	2
170	<title>Longitudinal single-mode operation of broad-stripe laser diode using a photorefractive phase conjugator</title> ., 1996, 2896, 110.		1
171	Influence of laser action on thermal loading in diode-pumped Nd:YVO4, 2001,, ME17.		1
172	Compact continuous-wave yellow laser based on a self-stimulating Raman Nd:YVO4 laser. , 2007, , WB19.		1
173	Controllable direction switching of vortex output in a Nd:YVO <inf>4</inf> bounce laser., 2011, , .		1
174	Cherenkov phase-matched terahertz wave generation and its spectroscopic applications. Proceedings of SPIE, $2013, \ldots$	0.8	1
175	Spiral relief formation in an azo-polymer film by the irradiation of a circularly polarized optical vortex beam. , $2013, , .$		1
176	Highly efficient frequency doubling of optical vortex. , 2015, , .		1
177	Optical vortex pumped solid-state Raman laser. , 2017, , .		1
178	Crystalline silicon (111) needle formed by optical vortex illumination. , 2017, , .		1
179	Handedness Control of Visible Optical Vortex Output from a Diode-Pumped Pr3+:YLF Laser. , 2019, , .		1
180	Creation of Two-Photon Absorption Photo-Polymerization Induced Helical Microfibers. , 2019, , .		1

#	Article	IF	CITATIONS
181	Measurements of thermal lensing in line-focus end-pumped Nd:YAG slabs. , 1998, , .		1
182	25~W pico-second vortex output from a mixed-vanadate master laser and a Yb-doped fiber power amplifier. , $2010,$, .		1
183	Enhancement of Nonlinearity by Terahertz Vortex Beam. , 2018, , .		1
184	Fabrication of hollow microneedles by optical vortex illumination. , 2018, , .		1
185	Optical vortex induced chiral mass-transport of azo-polymer through two photon absorption. , 2018, , .		1
186	Direct generation of vortex beams from a diode-pumped Pr3+:YLF laser., 2019,,.		1
187	Microfabrication of Au Film Using Optical Vortex Beam. Journal of Laser Micro Nanoengineering, 0, , .	0.1	1
188	<title>Self-adaptive external resonator for second-harmonic generation in laser-diode-pumped NYAB laser using photorefractive phase conjugate feedback</title> ., 1998, 3554, 191.		0
189	<title>Improvement of the oscillation mode of the broad-area diode lasers by injection locking with photorefractive mutually pumped phase conjugators /title>., 1998, 3554, 133.</td><td></td><td>0</td></tr><tr><td>190</td><td><title>Thermal transmission characteristics of a set of fiber Fabry-Perot etalons designed for an optical FDM system integrated for broadcasting and communication /title>., 1999,,.</td><td></td><td>0</td></tr><tr><td>191</td><td>Characterization of an axisymmetric birefringent optical fiber. , 2002, 4920, 510.</td><td></td><td>0</td></tr><tr><td>192</td><td>Self-stimulating, Transversely Diode-pumped Nd3+: PbWO4 yellow laser., 2003,, 21.</td><td></td><td>0</td></tr><tr><td>193</td><td>Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram. , 0, , .</td><td></td><td>0</td></tr><tr><td>194</td><td>Highly efficient phase-conjugation of a pico-second <math>1\&\#x03BC;m</math> Laguerre-Gaussian beam. , <math>2006,</math> , .</td><td></td><td>0</td></tr><tr><td>195</td><td>High-peak power output from a waveguide dye laser based on a random active layer. , 2006, , .</td><td></td><td>0</td></tr><tr><td>196</td><td>Self-diffraction of a femto-second Laguerre-Gaussian beam in a dye polymer., 2006,,.</td><td></td><td>0</td></tr><tr><td>197</td><td>Ultra-fast phase conjugate laser system. , 2007, , .</td><td></td><td>0</td></tr><tr><td>198</td><td>Highly efficient pico-second waveguide dye laser based on a random active medium. , 2007, , .</td><td></td><td>0</td></tr></tbody></table></title>		

#	Article	IF	CITATIONS
199	ãf¬ãf¼ã,¶ãf¼å‰æ³¢é¢å^¶å¾¡æŠ€è¡"ãë°Œå‰åå¸åŽææ−™ã¸ã®å¿œç"". Kobunshi, 2007, 56, 501-504.	0.0	O
200	Birefringence generation mechanism in a fiber Fabry-Perot etalon buried in a fiber connector housing. Electronics and Communications in Japan, 2007, 90, 56-62.	0.1	0
201	Ultra-high-power optical vortex output from a side-pumped Nd:GdVO <inf>4</inf> bounce laser., 2008,		0
202	Advanced Laser Technologies Based on A Functional Diffractive Optics. The Review of Laser Engineering, 2009, 37, 788-791.	0.0	0
203	Pico-second vortex output from a large-mode area fiber amplifier. , 2009, , .		0
204	Nano-particles transportation using a holographic multiple-vortex tweezer. , 2009, , .		0
205	High-power pico-second vortex laser based on a large-mode area fiber amplifier. , 2009, , .		0
206	Near-ultraviolet laser based on organic waveguide dye laser containing a random scattering active media., 2009,,.		0
207	Laser ablation using a nanosecond optical vortex pulse. , 2009, , .		0
208	Laser ablation by optical vortex beams. , 2010, , .		0
209	Metal nano-particles manipulation by using optical multiple vortex tweezer. Proceedings of SPIE, 2010,	0.8	0
210	Over 20W pico-second vortex output from a large-mode-area fiber MOPA system. , 2010, , .		0
211	Optical-fiber laser produces high-power vortex output. SPIE Newsroom, 0, , .	0.1	0
212	Sub-mJ nano-second vortex pulse generation from a stressed Yb-doped double-clad fiber amplifier. , $2011, \ldots$		0
213	Over 25W nanosecond vortex laser based on a stressed Yb-doped fiber power amplifier. , 2012, , .		0
214	Nano-needle fabrication based on optical vortex laser ablation. , 2012, , .		0
215	Ultra-violet optical vortex generation. , 2013, , .		0
216	Helicity control of a 2-μm optical vortex output from a vortex-pumped optical parametric oscillator., 2013,,.		0

#	Article	IF	CITATIONS
217	Real-time THz-wave spectroscopy via infrared lights detection interacted with evanescent THz waves. , 2014, , .		0
218	Chiral polymeric relief structures fabricated by using optical vortices. , 2014, , .		0
219	Helical lights twist materials to form chiral structures -Chiral Photonics , 2014, , .		0
220	High average power picosecond sapphire face-cooled Nd :YVO <inf> 4</inf> bounce laser system. , 2015, , .		0
221	Optical vortices pioneer chiral nano-structures. , 2015, , .		0
222	Broadband THz vortex pulse generation by a Tsurupica spiral phase plate., 2015,,.		0
223	Novel THz-wave detection technique via interaction between optical pumping waves and THz-wave generated by Cherenkov phase matching. , 2015, , .		0
224	Handedness control of sub-millijoule mid-infrared (6–12μm) vortex laser. , 2015, , .		0
225	Widely tunable 1μm optical vortex laser. , 2015, , .		0
226	Nanostructures creation by optical angular momentum transfer. Proceedings of SPIE, 2016, , .	0.8	0
227	Circularly polarized lights twist azo-polymer to form helical surface relief. Proceedings of SPIE, 2017,	0.8	0
228	Twisted polymeric microfiber formed by structured light illumination. Proceedings of SPIE, 2017, , .	0.8	0
229	Plasmonic Au nano-needle fabricated by optical vortex laser illumination. , 2017, , .		0
230	Circularly polarized lights illumination to fabricate helical surface relief in azo-polymer film. , 2017, , .		0
231	Mid-infrared optical vortex parametric laser with topological charge versatility. , 2017, , .		0
232	Mid-infrared 3–5 νÎι optical vortex MgO:PPLN parametric oscillator. , 2017, , .		0
233	Chiral nearfield generation from a chiral surface relief fabricated by optical vortex illumination with nano-imprinting technology. , 2017, , .		0
234	Millijoule-level, ultra-broadband tunable (0.67–2.4 Î⅓m) optical vortex parametric laser. , 2017, , .		0

#	Article	IF	Citations
235	Q-switched self-Raman vortex laser using a defect mirror., 2017,,.		О
236	Generation of Multiple Up-Converted OAM States from a Tunable Optical Vortex Parametric Laser Source. , $2019, , .$		0
237	Radially polarized solid-state Raman laser. , 2021, , .		0
238	Azo-polymer spiral surface relief formation with rotating Hermite-Gaussian beams., 2021,,.		0
239	High-resolution terahertz single-pixel imaging for 2D spectral analysis. , 2021, , .		0
240	Light twists materials. , 2021, , .		0
241	Two-Point-Separation in Far-Field Super-Resolution Fluorescence Microscopy Based on Two-Color Fluorescence Dip Spectroscopy. Hyomen Kagaku, 2004, 25, 466-472.	0.0	0
242	High quality, high power pico-second laser system with a phase conjugate mirror. The Review of Laser Engineering, 2007, 35, 58-59.	0.0	0
243	35 MW pulses with 44 W average power from a pico-second phase-conjugate Nd:GdVO4 laser system. , 2008, , .		0
244	50W pico-second Nd:GdVO4 bounce laser with a phase-conjugate mirror., 2010,,.		0
245	105 W pico-second Nd:YVO4 bounce amplifier system with a photorefractive phase conjugate mirror. , 2010, , .		O
246	Generation of Optical Pulses with Phase and/or Polarization Singularities and Their Applications. Hyomen Kagaku, 2011, 32, 748-754.	0.0	0
247	Recent progress of high power optical vortex laser technologies. , 2012, , .		O
248	Milli-joule level 2m vortex pulses from an optical vortex pumped optical parametric oscillator., 2012,,		0
249	High Power Optical Vortex Lasers and Their Application to Material Processing. The Review of Laser Engineering, 2013, 41, 708.	0.0	0
250	Tunable mid-infrared (6.3–7.8 Âμm) optical vortex laser. , 2014, , .		0
251	Chiral mono-crystalline silicon nano-cone fabrication by optical vortex pumping. , 2014, , .		0
252	Influence of laser action on thermal loading in diode-pumped Nd:YVO4. , 1999, , .		0

#	Article	IF	CITATIONS
253	Handedness control of mid-infrared (9-12μm) vortex laser. , 2015, , .		O
254	Optical angular momentum structures chiral materials and devices. , 2016, , .		0
255	Towards chiral materials science based on optical vortices illumination. , 2016, , .		0
256	Tunable optical vortex generation in a â€~whole mid-infrared' wavelength region of 6-18 μm. , 2016, , .		0
257	Monocycle 0.6-terahertz vortex generation. , 2016, , .		0
258	Monocrystalline silicon needle formation by optical vortex illumination. , 2016, , .		0
259	Octave-band tunable (0.74-1.89 µm) optical vortex laser. , 2016, , .		0
260	Widely tunable optical vortex parametric laser with versatility of orbital angular momentum., 2017,,.		0
261	Optical vortex illumination to form polymeric twisted fiber. , 2017, , .		0
262	High average power ultraviolet picosecond optical vortex generation., 2017,,.		0
263	Creating a crystalline silicon (111) needle by optical vortex illumination. , 2017, , .		O
264	Two photon absorption induced chiral mass transport of azo–polymer by optical vortex illumination. , 2018, , .		0
265	Optical vortex parametric laser with a versatile orbital angular momentum. , 2018, , .		0
266	Handedness control of a mid-infrared 3.5 \hat{l} 4m optical vortex MgO: PPLN parametric oscillator., 2018,,.		0
267	Low threshold tunable 2 μm optical vortex laser source. , 2018, , .		0
268	Direct generation of bottle beam from a frequency-doubled Nd:YVO4 laser. , 2018, , .		0
269	Chiral Mass Transport Induced by Optical Angular Momentum. The Review of Laser Engineering, 2018, 46, 200.	0.0	0
270	Can light twist materials?. , 2018, , .		0

#	Article	IF	CITATIONS
271	Optical vortices establish self-written helical fiber via two photon absorption., 2018,,.		O
272	Creation of Structured Materials with Optical Vortices. , 2018, , .		0
273	Two-photon induced â€~super-resolution' single-armed relief in azo-polymer film. , 2018, , .		0
274	Power- and Frequency-Scalable Modulation of the Optical Orbital Angular Momentum., 2018,,.		0
275	Widely tunable (2-6THz) Terahertz vortex source. , 2018, , .		0
276	Versatile vortex laser sources and their application. , 2018, , .		0
277	String-shaped Au structures fabricated by optical vortex ablation. , 2018, , .		0
278	Sub-millimeter helical fiber created by Bessel vortex beam illumination. , 2018, , .		0
279	Bottle beam generation from a frequency-doubled Nd:YVO4 laser with a tightly end-pumping geometry. , 2018, , .		0
280	Welcome to OSA Continuum, 2018, 1, 1.	1.8	0
281	Two-photon induced chiral mass-transport of azo-polymers as a function of pulse duration. , 2019, , .		0
282	Micron-scale †ink-jet' created by optical vortex ablation. , 2019, , .		0
283	Special Section Guest Editorial: Optical Manipulation and Structured Materials. Journal of Nanophotonics, 2019, 13, 1.	1.0	0
284	1108 nm vortex mode generation from a Self-Raman Nd:GdVO4 laser. , 2020, , .		0
285	Spinning twin-mode generation in a bacteriorhodopsin suspension. , 2020, , .		0
286	Fractional optical vortex creates a curved "spin-jet"., 2020,,.		0
287	Two photon-induced chiral structures of azo-polymers. , 2020, , .		0
288	Fractional Optical Vortex Induced Mass Forward Transfer -Deflected â€~Spin-Jet' , 2020, , .		0

ARTICLE IF CITATIONS

289 Optical vortex induced flower-shaped surface relief of azo-polymers., 2020,,... o