
Pitt Supaphol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9002143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immobilization of osteopontin on poly(ε-caprolactone) scaffolds by polyelectrolyte multilayer deposition to improve the osteogenic differentiation of MC3T3-E1 cells. Polymer Bulletin, 2022, 79, 4667-4684.	3.3	3
2	Development and characterization of antibacterial hydroxyapatite coated with mangosteen extract for bone tissue engineering. Polymer Bulletin, 2021, 78, 3543-3559.	3.3	9
3	Gelatin scaffolds loaded with asiaticoside/ <scp>2â€hydroxypropylâ€Î²</scp> yclodextrin complex for use as wound dressings. Polymers for Advanced Technologies, 2021, 32, 1187-1193.	3.2	7
4	Development of thermoresponsive poloxamer in situ gel loaded with gentamicin sulfate for cavity wounds. Journal of Polymer Research, 2021, 28, 1.	2.4	9
5	Surface immobilization of PCL electrospun nanofibers with pexiganan for wound dressing. Journal of Polymer Research, 2021, 28, 1.	2.4	18
6	Wound-aided semi-solid poly(vinyl alcohol) hydrogels incorporating essential oil-loaded chitosan nanoparticles. International Journal of Biological Macromolecules, 2021, 189, 135-141.	7.5	9
7	The potential use of cross-linked alginate/gelatin hydrogels containing silver nanoparticles for wound dressing applications. Polymer Bulletin, 2020, 77, 2679-2695.	3.3	17
8	Adsorption study of bovine serum albumin onto multiwalled carbon nanotubes. Materials Today: Proceedings, 2020, 33, 1814-1818.	1.8	0
9	Development of gelatin hydrogel pads incorporated with Eupatorium adenophorum essential oil as antibacterial wound dressing. Polymer Bulletin, 2019, 76, 701-724.	3.3	28
10	Development of antituberculosis melt-blown polypropylene filters coated with mangosteen extracts for medical face mask applications. Polymer Bulletin, 2019, 76, 1985-2004.	3.3	24
11	Semi-solid poly(vinyl alcohol) hydrogels containing ginger essential oil encapsulated in chitosan nanoparticles for use in wound management. Journal of Polymer Research, 2019, 26, 1.	2.4	34
12	Cyclic tensile force-upregulated IL6 increases MMP3 expression by human periodontal ligament cells. Archives of Oral Biology, 2019, 107, 104495.	1.8	16
13	The use of electrospun curcumin-loaded poly(L-lactic acid) fiber mats as wound dressing materials. Journal of Drug Delivery Science and Technology, 2019, 53, 101121.	3.0	47
14	Green synthesis of photomediated silver nanoprisms via a light-induced transformation reaction and silver nanoprism-impregnated bacteria cellulose films for use as antibacterial wound dressings. Journal of Drug Delivery Science and Technology, 2019, 54, 101305.	3.0	10
15	Development of bacterial cellulose/alginate/chitosan composites incorporating copper (II) sulfate as an antibacterial wound dressing. Journal of Drug Delivery Science and Technology, 2019, 51, 662-671.	3.0	79
16	Synthesis of Cationic Waterborne Polyurethanes from Waste Frying Oil as Antibacterial Film Coatings. International Journal of Polymer Science, 2019, 2019, 1-11.	2.7	5
17	Cyclic tensile force stimulates BMP9 synthesis and in vitro mineralization by human periodontal ligament cells. Journal of Cellular Physiology, 2019, 234, 4528-4539.	4.1	21
18	The potential use of gentamicin sulfate-loaded poly(l-lactic acid)-sericin hybrid scaffolds for bone tissue engineering. Polymer Bulletin, 2019, 76, 2867-2885.	3.3	6

#	Article	IF	CITATIONS
19	Electrospinning: a carbonized gold/graphene/PAN nanofiber for high performance biosensing. Analytical Methods, 2018, 10, 874-883.	2.7	17
20	Preparation and characterization of electrospun polyacrylonitrile fiber mats containing Garcinia mangostana. Polymer Bulletin, 2018, 75, 1311-1327.	3.3	12
21	Protein adsorption and cell behaviors on polycaprolactone film: The effect of surface topography. Advances in Polymer Technology, 2018, 37, 2030-2042.	1.7	36
22	Carbonized electrospun polyvinylpyrrolidone/metal hybrid nanofiber composites for electrochemical applications. Journal of Applied Polymer Science, 2018, 135, 45639.	2.6	12
23	Silver nanoparticles-based hydrogel: Characterization of material parameters for pressure ulcer dressing applications. Journal of Drug Delivery Science and Technology, 2018, 44, 91-100.	3.0	48
24	Enhancement of biocompatibility on aligned electrospun poly(3â€hydroxybutyrate) scaffold immobilized with laminin towards murine neuroblastoma Neuro2a cell line and rat brainâ€derived neural stem cells (mNSCs). Polymers for Advanced Technologies, 2018, 29, 2050-2063.	3.2	16
25	Preparation of mangosteen extract-loaded poly(vinyl acetate) for use as an antibacterial spray-on dressing. Journal of Drug Delivery Science and Technology, 2018, 46, 322-329.	3.0	21
26	Hydrogel wound dressings loaded with PLGA/ciprofloxacin hydrochloride nanoparticles for use on pressure ulcers. Journal of Drug Delivery Science and Technology, 2018, 47, 106-114.	3.0	18
27	Rotating-disk electrospinning: needleless electrospinning of poly(caprolactone), poly(lactic acid) and poly(vinyl alcohol) nanofiber mats with controlled morphology. Journal of Polymer Research, 2018, 25, 1.	2.4	26
28	Proton Exchange Membrane Based on Sulfonated Poly (Aromatic Imide-Co-Aliphatic Imide) for Direct Methanol Fuel Cell. Materials Research, 2018, 21, .	1.3	8
29	Preparation, characterization and biocompatibility of poly(vinyl alcohol) films containing tetracycline hydrochloride-loaded quaternized chitosan nanoparticles. Journal of Drug Delivery Science and Technology, 2017, 38, 36-44.	3.0	32
30	Fabrication and Evaluation of Polycaprolactone–Poly(hydroxybutyrate) or Poly(3â€Hydroxybutyrateâ€ <i>co</i> â€3â€Hydroxyvalerate) Dualâ€Leached Porous Scaffolds for Bone Tissue Engineering Applications. Macromolecular Materials and Engineering, 2017, 302, 1600289.	3.6	23
31	Gelatin scaffolds functionalized by silver nanoparticle-containing calcium alginate beads for wound care applications. Polymers for Advanced Technologies, 2017, 28, 849-858.	3.2	14
32	Electrospinning and solid state polymerization: A simple and versatile route to conducting PEDOT composite films. European Polymer Journal, 2017, 96, 452-462.	5.4	13
33	Effect of the surface topography and chemistry of poly(3-hydroxybutyrate) substrates on cellular behavior of the murine neuroblastoma Neuro2a cell line. Polymer Bulletin, 2017, 74, 4101-4118.	3.3	17
34	Antimicrobial mangosteen extract infused alginate-coated gauze wound dressing. Journal of Drug Delivery Science and Technology, 2017, 41, 182-190.	3.0	29
35	Performance of Electropun Polyacrylonitrile Nanofibrous Phases, Shown for the Separation of Water-Soluble Food Dyes via UTLC-Vis-ESI-MS. Nanomaterials, 2017, 7, 218.	4.1	6
36	Experimental investigation on process parameters of near-field deposition of electrospinning-based rapid prototyping. Virtual and Physical Prototyping, 2016, 11, 193-207.	10.4	8

#	Article	IF	CITATIONS
37	The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2016, 104, 264-271.	4.0	72
38	Hybrid biomimetic electrospun fibrous mats derived from poly(εâ€caprolactone) and silk fibroin protein for wound dressing application. Journal of Applied Polymer Science, 2015, 132, .	2.6	17
39	Electrospinnability of poly(butylene succinate): Effects of solvents and organic salt on the fiber size and morphology. Journal of Applied Polymer Science, 2015, 132, .	2.6	24
40	Electrospun crosslinked poly(acrylic acid) fiber constructs: towards a synthetic model of the cortical layer of nerve. Polymer International, 2015, 64, 42-48.	3.1	25
41	Applications of Cellulose Acetate Nanofiber Mats. , 2015, , 355-368.		5
42	Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy. International Journal of Biological Macromolecules, 2015, 80, 636-643.	7.5	41
43	Development of an electrospinning-based rapid prototyping for scaffold fabrication. Rapid Prototyping Journal, 2015, 21, 329-339.	3.2	17
44	Environmental effects in fibre fabrication using electrospinning-based rapid prototyping. Virtual and Physical Prototyping, 2015, 10, 227-237.	10.4	10
45	Development of silver nanoparticles-loaded calcium alginate beads embedded in gelatin scaffolds for use as wound dressings. Polymer International, 2015, 64, 275-283.	3.1	32
46	Electrospun DOXY-h loaded-poly(acrylic acid) nanofiber mats: <i>in vitro</i> drug release and antibacterial properties investigation. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1292-1305.	3.5	40
47	Silver nanoparticle-embedded poly(vinyl pyrrolidone) hydrogel dressing: gamma-ray synthesis and biological evaluation. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 826-842.	3.5	26
48	Characterization and cytological effects of a novel glycated gelatine substrate. Biomedical Materials (Bristol), 2014, 9, 025001.	3.3	7
49	Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1986-2008.	3.5	27
50	Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2014, 102, 3379-3392.	4.0	138
51	Electrospun poly(l-lactic acid) fiber mats containing crude Garcinia mangostana extracts for use as wound dressings. Polymer Bulletin, 2014, 71, 925-949.	3.3	23
52	Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity. Journal of Applied Polymer Science, 2014, 131, .	2.6	63
53	Preparation and Characterization of Silver Nanoparticles-Loaded Calcium Alginate Beads Embedded in Gelatin Scaffolds. AAPS PharmSciTech, 2014, 15, 1105-1115.	3.3	25
54	Development of a disposable electrode modified with carbonized, grapheneâ€loaded nanofiber for the detection of dopamine in human serum. Journal of Applied Polymer Science, 2014, 131, .	2.6	8

#	Article	IF	CITATIONS
55	Gamma irradiation synthesis and characterization of AgNP/gelatin/PVA hydrogels for antibacterial wound dressings. Journal of Applied Polymer Science, 2014, 131, .	2.6	26
56	Electrically Conductive Ultrafine Fibers of PVA-PEDOT/PSS and PVA-AgNPs by Means of Electrospinning. Advanced Materials Research, 2014, 1033-1034, 1024-1035.	0.3	3
57	Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings. Biomedical Materials (Bristol), 2014, 9, 045008.	3.3	61
58	Surface modification of electrospun chitosan nanofibrous mats for antibacterial activity. Journal of Applied Polymer Science, 2014, 131, .	2.6	23
59	Development and Characterization of a Novel, Antimicrobial, Sterile Hydrogel Dressing for Burn Wounds: Singleâ€Step Production with Gamma Irradiation Creates Silver Nanoparticles and Radical Polymerization. Journal of Pharmaceutical Sciences, 2014, 103, 3244-3253.	3.3	45
60	Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1240-1252.	3.5	57
61	The Study of Competitive Adsorption of Heavy Metal Ions from Aqueous Solution by Aminated Polyacrylonitrile Nanofiber Mats. Energy Procedia, 2014, 56, 142-151.	1.8	93
62	The responses of human adipose-derived mesenchymal stem cells on polycaprolactone-based scaffolds: an in vitro study. Tissue Engineering and Regenerative Medicine, 2014, 11, 239-246.	3.7	24
63	Antimicrobial efficacy of a novel silver hydrogel dressing compared to two common silver burn wound dressings: Acticoatâ,,¢ and PolyMem Silver®. Burns, 2014, 40, 89-96.	1.9	113
64	Preparation of bioactive glycosylated glial cellâ€line derived neurotrophic factorâ€loaded microspheres for medical applications. Journal of Applied Polymer Science, 2014, 131, .	2.6	9
65	Electrospinning of Asiaticoside/2-Hydroxypropyl-β-cyclodextrin Inclusion Complex-loaded Cellulose Acetate Fiber Mats: Release Characteristics and Potential for Use as Wound Dressing. Porrime, 2014, 38, 338-350.	0.2	5
66	Environmental Effects in Fiber Fabrication Using Electrospinning-Based Rapid Prototyping. , 2014, , .		0
67	Preparation and characterization of electrospun poly(vinyl alcohol) nanofibers containing platinum or platinum-ruthenium nanoparticles. Journal of Polymer Research, 2013, 20, 1.	2.4	11
68	Modification of disposable screenâ€printed carbon electrode surfaces with conductive electrospun nanofibers for biosensor applications. Journal of Applied Polymer Science, 2013, 130, 3885-3893.	2.6	10
69	Electrospun nanofiber layers with incorporated photoluminescence indicator for chromatography and detection of ultraviolet-active compounds. Journal of Chromatography A, 2013, 1299, 110-117.	3.7	31
70	Process optimization of electrospun silk fibroin fiber mat for accelerated wound healing. Journal of Applied Polymer Science, 2013, 130, 3634-3644.	2.6	46
71	Effects of copolymer microstructure on the properties of electrospun poly(l-lactide-co-îµ-caprolactone) absorbable nerve guide tubes. Journal of Applied Polymer Science, 2013, 130, n/a-n/a.	2.6	11
72	DEVELOPMENT OF POLYCAPROLACTONE POROUS SCAFFOLDS BY COMBINING SOLVENT CASTING, PARTICULATE LEACHING, AND POLYMER LEACHING TECHNIQUES FOR BONE TISSUE ENGINEERING. Journal of Biomedical Materials Research - Part A, 2013, 102, n/a-n/a.	4.0	35

#	Article	IF	CITATIONS
73	Biological responses of MC3T3-E1 cultured on poly(□-caprolactone) sponge scaffolds filled with crude bone protein-loaded hydroxyapatite nanoparticles. , 2012, , .		0
74	Preparation and Characterization of Caffeic Acid-Grafted Electrospun Poly(<scp>l</scp> -Lactic Acid) Fiber Mats for Biomedical Applications. ACS Applied Materials & Interfaces, 2012, 4, 3031-3040.	8.0	34
75	Electrospun poly(L-lactic acid) fiber mats containing a crude Garcinia cowa extract for wound dressing applications. Journal of Polymer Research, 2012, 19, 1.	2.4	12
76	Hydroxyapatite/ovalbumin composite particles as model protein carriers for bone tissue engineering: I. Synthesis and characterization. Materials Science and Engineering C, 2012, 32, 758-762.	7.3	13
77	Polydiphenylamine–polyethylene oxide blends as methanol sensing materials. Advances in Polymer Technology, 2012, 31, 401-413.	1.7	11
78	<i>In vitro</i> efficacy and toxicology evaluation of silver nanoparticleâ€loaded gelatin hydrogel pads as antibacterial wound dressings. Journal of Applied Polymer Science, 2012, 124, 1668-1682.	2.6	46
79	Effects of processing parameters on morphology of electrospun polystyrene nanofibers. Korean Journal of Chemical Engineering, 2012, 29, 173-181.	2.7	49
80	Carbendazimâ€loaded electrospun poly(vinyl alcohol) fiber mats and release characteristics of carbendazim therefrom. Polymers for Advanced Technologies, 2011, 22, 1366-1374.	3.2	8
81	Effect of the Surface Topography of Electrospun Poly(Îμ-caprolactone)/Poly(3-hydroxybuterate- <i>co</i> -3-hydroxyvalerate) Fibrous Substrates on Cultured Bone Cell Behavior. Langmuir, 2011, 27, 10938-10946.	3.5	19
82	Electrospinning of Biocompatible Polymers and Their Potentials in Biomedical Applications. Advances in Polymer Science, 2011, , 213-239.	0.8	52
83	Effects of Magnesium and Zirconium Dopants on Characteristics of Titanium(IV) Oxide Fibers Prepared by Combined Sol–Gel and Electrospinning Techniques. Industrial & Engineering Chemistry Research, 2011, 50, 8042-8049.	3.7	12
84	Preparation of Hydrolyzed Electrospun Polyacrylonitrile Fiber Mats as Chelating Substrates: A Case Study on Copper(II) Ions. Industrial & Engineering Chemistry Research, 2011, 50, 11912-11921.	3.7	56
85	Tuning Hydrophobicity and Water Adhesion by Electrospinning and Silanization. Langmuir, 2011, 27, 3654-3661.	3.5	51
86	Biologically Inspired Hierarchical Design of Nanocomposites Based on Poly(ethylene oxide) and Cellulose Nanofibers. Macromolecular Rapid Communications, 2011, 32, 1367-1372.	3.9	29
87	Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydrate Polymers, 2011, 83, 1457-1469.	10.2	145
88	Use of 2-hydroxypropyl-Î ² -cyclodextrin as adjuvant for enhancing encapsulation and release characteristics of asiaticoside within and from cellulose acetate films. Carbohydrate Polymers, 2011, 85, 251-260.	10.2	12
89	Improvement of Hydrophilic Properties on Electrospun Polyacrylonitrile Fabrics Surface by Plasma Treatment. Advanced Materials Research, 2011, 213, 103-106.	0.3	0
90	Electrospun poly(<scp>L</scp> â€lactic acid)/hydroxyapatite composite fibrous scaffolds for bone tissue engineering. Polymer International, 2010, 59, 227-235.	3.1	15

#	Article	IF	CITATIONS
91	Thermal stability of isotactic polypropylene modified with calcium carbonate nanoparticles. Polymer Bulletin, 2010, 64, 783-790.	3.3	22
92	Preparation and characterization of chitosan-hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydrate Polymers, 2010, 81, 675-680.	10.2	102
93	Fibrous zinc oxide prepared by combined electrospinning and solvothermal techniques. Ceramics International, 2010, 36, 357-363.	4.8	36
94	Fabrication and characterization of neat and aluminium-doped titanium (IV) oxide fibers prepared by combined sol–gel and electrospinning techniques. Ceramics International, 2010, 36, 2055-2061.	4.8	10
95	Effect of gamma radiation on dilute aqueous solutions and thin films of N-succinyl chitosan. Polymer Degradation and Stability, 2010, 95, 234-244.	5.8	30
96	Preparation of poly(vinyl alcohol)/tin glycolate composite fibers by combined sol–gel/electrospinning techniques and their conversion to ultrafine tin oxide fibers. Materials Chemistry and Physics, 2010, 119, 175-181.	4.0	5
97	Polycaprolactone/hydroxyapatite composite scaffolds: Preparation, characterization, and <i>in vitro</i> and <i>in vivo</i> biological responses of human primary bone cells. Journal of Biomedical Materials Research - Part A, 2010, 94A, 241-251.	4.0	165
98	<i>In vitro</i> biological evaluation of electrospun cellulose acetate fiber mats containing asiaticoside or curcumin. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1216-1225.	4.0	31
99	Preparation, characterization, and antibacterial properties of electrospun polyacrylonitrile fibrous membranes containing silver nanoparticles. Journal of Applied Polymer Science, 2010, 116, 1967-1976.	2.6	36
100	Preparation and properties of αâ€chitinâ€whiskerâ€reinforced hyaluronan–gelatin nanocomposite scaffolds. Journal of Applied Polymer Science, 2010, 117, 3406-3418.	2.6	27
101	Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends. Journal of Food Engineering, 2010, 98, 370-376.	5.2	177
102	Melt rheology and extrudate swell of sodium chloride-filled low-density polyethylene: Effects of content and size of salt particles. Polymer Testing, 2010, 29, 188-195.	4.8	14
103	In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells. European Polymer Journal, 2010, 46, 428-440.	5.4	59
104	Wet-spun alginate/chitosan whiskers nanocomposite fibers: Preparation, characterization and release characteristic of the whiskers. Carbohydrate Polymers, 2010, 79, 738-746.	10.2	88
105	Xâ€ray diffraction and dynamic mechanical analyses of αâ€chitin whiskerâ€reinforced poly(vinyl alcohol) nanocomposite nanofibers. Polymer International, 2010, 59, 85-91.	3.1	57
106	A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polymers for Advanced Technologies, 2010, 21, 77-95.	3.2	637
107	Aliphatic Lipid Substitution on 2 kDa Polyethylenimine Improves Plasmid Delivery and Transgene Expression. Molecular Pharmaceutics, 2010, 7, 618-618.	4.6	0
108	Preparation and Adsorption Behavior of Aminated Electrospun Polyacrylonitrile Nanofiber Mats for Heavy Metal Ion Removal. ACS Applied Materials & Interfaces, 2010, 2, 3619-3627.	8.0	332

#	Article	IF	CITATIONS
109	Morphology, Release Characteristics, and Antimicrobial Effect of Nisin-Loaded Electrospun Gelatin Fiber Mat. Journal of Food Protection, 2009, 72, 2293-2300.	1.7	27
110	Novel Chitosan-Spotted Alginate Fibers from Wet-Spinning of Alginate Solutions Containing Emulsified Chitosanâ^'Citrate Complex and their Characterization. Biomacromolecules, 2009, 10, 320-327.	5.4	63
111	Gallic Acidâ€Loaded Electrospun Poly(<scp>L</scp> â€Lactic Acid) Fiber Mats and their Release Characteristic. Macromolecular Chemistry and Physics, 2009, 210, 814-822.	2.2	46
112	Development of Gelatin Hydrogel Pads as Antibacterial Wound Dressings. Macromolecular Bioscience, 2009, 9, 1004-1015.	4.1	74
113	Stochastic simulation for morphological development during the isothermal crystallization of semicrystalline polymers: A case study of syndiotactic polypropylene. Journal of Applied Polymer Science, 2009, 111, 2260-2268.	2.6	6
114	Versatile route for tuning optical properties of poly(2â€methoxyâ€5â€(2′â€ethylhexyloxy)â€1,4â€phenylenevi Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 696-705.	nylene).	3
115	Electrospun 1,6-diisocyanatohexane-extended poly(1,4-butylene succinate) fiberÂmats and their potential for use as bone scaffolds. Polymer, 2009, 50, 1548-1558.	3.8	37
116	Aliphatic Lipid Substitution on 2 kDa Polyethylenimine Improves Plasmid Delivery and Transgene Expression. Molecular Pharmaceutics, 2009, 6, 1798-1815.	4.6	124
117	Development of Meloxicam-Loaded Electrospun Polyvinyl Alcohol Mats as a Transdermal Therapeutic Agent. Pharmaceutical Development and Technology, 2009, 14, 73-82.	2.4	72
118	Biodegradable alginate microparticles developed by electrohydrodynamic spraying techniques for oral delivery of protein. Journal of Microencapsulation, 2009, 26, 563-570.	2.8	72
119	Immobilization of Biomolecules on the Surface of Electrospun Polycaprolactone Fibrous Scaffolds for Tissue Engineering. ACS Applied Materials & Interfaces, 2009, 1, 1076-1085.	8.0	137
120	Effectual drug-releasing porous scaffolds from 1,6-diisocyanatohexane-extended poly(1,4-butylene) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
121	Electrospun cellulose acetate fiber mats containing asiaticoside or Centella asiatica crude extract and the release characteristics of asiaticoside. Polymer, 2008, 49, 4239-4247.	3.8	93
122	Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer, 2008, 49, 4723-4732.	3.8	484
123	Electrospun dextran fibrous membranes. Cellulose, 2008, 15, 435-444.	4.9	35
124	Morphology and Photophysical Properties of Electrospun Lightâ€Emitting Polystyrene/Poly(<i>p</i> â€phenylene ethynylene) Fibers. Macromolecular Materials and Engineering, 2008, 293, 952-963.	3.6	6
125	On the electrospinning of poly(vinyl alcohol) nanofiber mats: A revisit. Journal of Applied Polymer Science, 2008, 108, 969-978.	2.6	133
126	Fabrication, structure, and properties of chitin whiskerâ€reinforced alginate nanocomposite fibers. Journal of Applied Polymer Science, 2008, 110, 890-899.	2.6	116

#	Article	IF	CITATIONS
127	Melt rheology and extrudate swell of titanium (IV) oxide nanoparticle-filled isotactic polypropylene: Effects of content and surface characteristics. Polymer Testing, 2008, 27, 951-956.	4.8	25
128	In vitro biocompatibility of electrospun hexanoyl chitosan fibrous scaffolds towards human keratinocytes and fibroblasts. European Polymer Journal, 2008, 44, 2060-2067.	5.4	52
129	Development of polyelectrolyte multilayer-coated electrospun cellulose acetate fiber mat as composite membranes. European Polymer Journal, 2008, 44, 3963-3968.	5.4	31
130	Preparation of Ultraâ€Fine Silica Fibers Using Electrospun Poly(Vinyl Alcohol)/Silatrane Composite Fibers as Precursor. Journal of the American Ceramic Society, 2008, 91, 2830-2835.	3.8	23
131	Electrospun gelatin fiber mats containing a herbal— <i>Centella asiatica</i> —extract and release characteristic of asiaticoside. Nanotechnology, 2008, 19, 015102.	2.6	72
132	Extraction and electrospinning of gelatin from fish skin. International Journal of Biological Macromolecules, 2008, 42, 247-255.	7.5	161
133	Isotactic Poly(propylene)/Wood Sawdust Composite: Effects of Natural Weathering, Water Immersion, and Gammaâ€Ray Irradiation on Mechanical Properties. Macromolecular Symposia, 2008, 264, 59-66.	0.7	8
134	Miscibility, Isothermal Crystallization/Melting Behavior and Morphology of Poly(Trimethylene) Tj ETQq0 0 0 rgBT	Overlock 0.2	10 Tf 50 467 4
135	Preparation of Ultrafine TiO ₂ Nanofibers and their Application in Removal of NO _x in Air. Materials Science Forum, 2008, 569, 25-28.	0.3	5
136	Preparation and Physico-Chemical Characteristics of N-Maleoyl Chitosan Films. Macromolecular Symposia, 2008, 264, 121-126.	0.7	6
137	Electrospun poly(vinyl alcohol) fiber mats as carriers for extracts from the fruit hull of mangosteen. Journal of Cosmetic Science, 2008, 59, 233-42.	0.1	23
138	Photocatalytic Activity of Neat and Silicon-Doped Titanium(IV)Oxide Nanofibers Prepared by Combined Sol–Gel and Electrospinning Techniques. Journal of Nanoscience and Nanotechnology, 2007, 7, 2443-2450.	0.9	17
139	Mechanical and electro-rheological properties of electrospun poly(vinyl alcohol) nanofibre mats filled with carbon black nanoparticles. Nanotechnology, 2007, 18, 145705.	2.6	47
140	Preparation of Ultrafine Poly(ethylene oxide)/Poly(ethylene glycol) Fibers Containing Silver Nanoparticles as Antibacterial Coating. , 2007, , .		4
141	Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 387-397.	4.3	301
142	In vitro biocompatibility of electrospun poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats. International Journal of Biological Macromolecules, 2007, 40, 217-223.	7.5	122
143	Effect of cross-linking on properties and release characteristics of sodium salicylate-loaded electrospun poly(vinyl alcohol) fibre mats. Nanotechnology, 2007, 18, 175102.	2.6	42
144	In Vitro Biocompatibility of Schwann Cells on Surfaces of Biocompatible Polymeric Electrospun Fibrous and Solution-Cast Film Scaffolds. Biomacromolecules, 2007, 8, 1587-1594.	5.4	98

#	Article	IF	CITATIONS
145	Preparation of electrospun silk fibroin fiber mats as bone scaffolds: a preliminary study. Biomedical Materials (Bristol), 2007, 2, 181-188.	3.3	81
146	Osteoblastic Phenotype Expression of MC3T3-E1 Cultured on Electrospun Polycaprolactone Fiber Mats Filled with Hydroxyapatite Nanoparticles. Biomacromolecules, 2007, 8, 2602-2610.	5.4	131
147	Preparation and Characterization of Polycaprolactone/Diclofenac Sodium and Poly(vinyl) Tj ETQq1 1 0.784314 rg Journal, 2007, 39, 369-378.	BT /Overlc 2.7	ock 10 Tf 50 35
148	Effect of casting solvent on characteristics of hexanoyl chitosan/polylactide blend films. Journal of Applied Polymer Science, 2007, 105, 1844-1852.	2.6	17
149	Color Change of Electrospun Polystyrene/MEH-PPV Fibers from Orange to Yellow through Partial Decomposition of MEH Side Groups. Macromolecular Rapid Communications, 2007, 28, 651-659.	3.9	37
150	Removal of solvent-based ink from printed surface of high-density polyethylene bottles by alkyltrimethylammonium bromides: Effects of pH, temperature, and salinity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 297, 163-171.	4.7	14
151	In vitro biocompatibility evaluations of hexanoyl chitosan film. Carbohydrate Polymers, 2007, 68, 166-172.	10.2	40
152	Non-isothermal melt-crystallization and mechanical properties of titanium(IV) oxide nanoparticle-filled isotactic polypropylene. Polymer Testing, 2007, 26, 20-37.	4.8	43
153	Effect of small amount of poly(ethylene naphthalate) on isothermal crystallization and spherulitic morphology of poly(trimethylene terephthalate). Polymer Testing, 2007, 26, 985-1000.	4.8	15
154	Electrospun Gelatin Fibers: Effect of Solvent System on Morphology and Fiber Diameters. Polymer Journal, 2007, 39, 622-631.	2.7	117
155	Electrospun Methacrylate-Based Copolymer/Indomethacin Fibers and Their Release Characteristics of Indomethacin. Journal of Polymer Research, 2007, 14, 53-59.	2.4	21
156	Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose, 2007, 14, 563-575.	4.9	207
157	Influences of thermal aging on properties and pyrolysis products of tire tread compound. Journal of Analytical and Applied Pyrolysis, 2007, 80, 269-276.	5.5	19
158	Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend. Polymer, 2007, 48, 1419-1427.	3.8	173
159	Release characteristics of four model drugs from drug-loaded electrospunÂcellulose acetate fiber mats. Polymer, 2007, 48, 5030-5041.	3.8	219
160	Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer, 2007, 48, 7546-7557.	3.8	271
161	Fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning. Nanotechnology, 2006, 17, 4519-4528.	2.6	121
162	Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology, 2006, 17, 2317-2329.	2.6	352

#	Article	IF	CITATIONS
163	Stability Improvement of Electrospun Chitosan Nanofibrous Membranes in Neutral or Weak Basic Aqueous Solutions. Biomacromolecules, 2006, 7, 2710-2714.	5.4	199
164	Electrospinning of Styrene-Isoprene Copolymeric Thermoplastic Elastomers. Polymer Journal, 2006, 38, 961-969.	2.7	13
165	Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 1039-1056.	3.5	94
166	Electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and their blends. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2923-2933.	2.1	77
167	Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polymer International, 2006, 55, 825-833.	3.1	137
168	Dilute solution properties of hexanoyl chitosan in chloroform, dichloromethane, and tetrahydrofuran. Carbohydrate Polymers, 2006, 64, 175-183.	10.2	8
169	Electrospinning of hexanoyl chitosan. Carbohydrate Polymers, 2006, 66, 298-305.	10.2	95
170	Surface-modified calcium carbonate particles by admicellar polymerization to be used as filler for isotactic polypropylene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 275, 114-125.	4.7	68
171	Non-isothermal melt- and cold-crystallization kinetics of poly(3-hydroxybutyrate). Polymer Testing, 2006, 25, 807-818.	4.8	48
172	Melt rheology and extrudate swell of low-density polyethylene/ethylene–octene copolymer blends. Polymer Testing, 2006, 25, 888-895.	4.8	14
173	Hard-coating materials for poly(methyl methacrylate) from glycidoxypropyltrimethoxysilane-modified silatrane via a sol–gel process. Surface and Coatings Technology, 2006, 200, 2784-2790.	4.8	59
174	Electrospinning of hexanoyl chitosan/polylactide blends. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 547-565.	3.5	75
175	Removal of solvent-based ink from printed surface of HDPE bottles by alkyltrimethylammonium bromides: effects of surfactant concentration and alkyl chain length. Colloid and Polymer Science, 2006, 284, 980-989.	2.1	7
176	Ultrafine electrospun poly(ethylene glycol)–polydimethylsiloxane–poly(ethylene glycol) triblock copolymer/poly(ethylene oxide) blend fibers. Materials Letters, 2006, 60, 2920-2924.	2.6	10
177	Rheological and isothermal crystallization characteristics of neat and calcium carbonate-filled syndiotactic polypropylene. Journal of Applied Polymer Science, 2006, 100, 4515-4525.	2.6	16
178	Polycarbonate microfilters by nuclear tracking and chemical etching (track-etching) technique: Preparation and characterization. Journal of Applied Polymer Science, 2006, 101, 982-990.	2.6	5
179	Mechanical properties of injection-molded isotactic polypropylene/roselle fiber composites. Journal of Applied Polymer Science, 2006, 101, 3291-3300.	2.6	34
180	In situ microfibrillar-reinforced composites of isotactic polypropylene/recycled poly(ethylene) Tj ETQq0 0 0 rgBT /	Overlock 2 2.6	10 Tf 50 67 T 64

1173-1181.

11

#	Article	IF	CITATIONS
181	Preparation and Characterization of Novel Bone Scaffolds Based on Electrospun Polycaprolactone Fibers Filled with Nanoparticles. Macromolecular Bioscience, 2006, 6, 70-77.	4.1	224
182	Effects of Poly(ethylene glycol), Inorganic Salt, Sodium Dodecyl Sulfate, and Solvent System on Electrospinning of Poly(ethylene oxide). Macromolecular Materials and Engineering, 2006, 291, 581-591.	3.6	72
183	The Influence of Solvent Properties and Functionality on the Electrospinnability of Polystyrene Nanofibers. Macromolecular Materials and Engineering, 2006, 291, 840-847.	3.6	62
184	Novel Bone Scaffolds of Electrospun Polycaprolactone Fibers Filled with Nanoparticles. Journal of Nanoscience and Nanotechnology, 2006, 6, 514-522.	0.9	76
185	The Control of Thermal and Radiation Stability of Polypropylene Containing Calcium Carbonate Nanoparticles. Macromolecular Symposia, 2006, 242, 319-324.	0.7	14
186	Fabrication of Aligned Poly(vinyl alcohol) Nanofibers by Electrospinning. Journal of Nanoscience and Nanotechnology, 2006, 6, 125-129.	0.9	45
187	Fabrication of aligned poly (vinyl alcohol) nanofibers by electrospinning. Journal of Nanoscience and Nanotechnology, 2006, 6, 125-9.	0.9	0
188	Preparation and characterization of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite films with or without heat treatment. Polymer, 2005, 46, 5637-5644.	3.8	142
189	Melt rheology and extrudate swell of calcium carbonate nanoparticle-filled isotactic polypropylene. Polymer Testing, 2005, 24, 2-11.	4.8	63
190	Non-isothermal melt-crystallization and subsequent melting behavior of pigmented medium-density polyethylene. Polymer Testing, 2005, 24, 873-885.	4.8	7
191	Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. European Polymer Journal, 2005, 41, 409-421.	5.4	394
192	Preparation and characterization of starch/poly(l-lactic acid) hybrid foams. Carbohydrate Polymers, 2005, 59, 329-337.	10.2	71
193	Preparation and characterization of hexanoyl chitosan/polylactide blend films. Carbohydrate Polymers, 2005, 60, 343-350.	10.2	85
194	Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydrate Polymers, 2005, 62, 130-136.	10.2	199
195	Thermal and crystallization characteristics of poly(trimethylene terephthalate)/poly(ethylene) Tj ETQq1 1 0.7843	14_rgBT /(Dverlock 10
196	Nonisothermal melt-crystallization kinetics of syndiotactic polypropylene compounded with various nucleating agents. Journal of Applied Polymer Science, 2005, 95, 245-253.	2.6	17
197	Preparation and Characterization of Microwave-treated Carboxymethyl Chitin and Carboxymethyl Chitosan Films for Potential Use in Wound Care Application. Macromolecular Bioscience, 2005, 5, 1001-1012.	4.1	78
198	Ultrafine Electrospun Polyamide-6 Fibers: Effects of Solvent System and Emitting Electrode Polarity on Morphology and Average Fiber Diameter. Macromolecular Materials and Engineering, 2005, 290, 933-942.	3.6	67

#	Article	IF	CITATIONS
199	Titanium (IV) oxide nanofibers by combined sol–gel and electrospinning techniques: preliminary report on effects of preparation conditions and secondary metal dopant. Science and Technology of Advanced Materials, 2005, 6, 240-245.	6.1	70
200	Electrospinning of polystyrene/poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene) blends. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1881-1891.	2.1	36
201	Ultrafine electrospun polyamide-6 fibers: Effect of emitting electrode polarity on morphology and average fiber diameter. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3699-3712.	2.1	81
202	Electrospinning of methacrylate-based copolymers: Effects of solution concentration and applied electrical potential on morphological appearance of as-spun fibers. Polymer Engineering and Science, 2005, 45, 1073-1080.	3.1	28
203	Effects of Solution Concentration, Emitting Electrode Polarity, Solvent Type, and Salt Addition on Electrospun Polyamide-6 Fibers: A Preliminary Report. Macromolecular Symposia, 2004, 216, 293-300.	0.7	63
204	Preparation and Properties of Starch/Poly(vinyl alcohol) Composite Foams. Macromolecular Symposia, 2004, 216, 217-228.	0.7	23
205	Isothermal melt-crystallization and melting behavior for three linear aromatic polyesters. Thermochimica Acta, 2004, 409, 63-77.	2.7	90
206	Porous polyethylene membranes by template-leaching technique: preparation and characterization. Polymer Testing, 2004, 23, 91-99.	4.8	32
207	Non-isothermal melt crystallization kinetics for poly(trimethylene terephthalate)/poly(butylene) Tj ETQq1 1 0.784	1314 rgBT 4.8	/Overlock 10
208	Thermal, crystallization, and rheological characteristics of poly(trimethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5	0 382 Td 4.8	(terephthalat
209	Thermal, crystallization, mechanical, and rheological characteristics of poly(trimethylene) Tj ETQq1 1 0.784314 rg Physics, 2004, 42, 676-686.	gBT /Overl 2.1	ock 10 Tf 50 76
210	Nonisothermal cold-crystallization kinetics of poly(trimethylene terephthalate). Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 4151-4163.	2.1	31
211	Effects of crystalline and orientational memory phenomena on the isothermal bulk crystallization and subsequent melting behavior of poly(trimethylene terephthalate). Polymer International, 2004, 53, 1118-1126.	3.1	22
212	Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polymer International, 2004, 53, 1851-1859.	3.1	364
213	Blends of ethylene-methyl acrylate-acrylic acid terpolymers with ethylene-acrylic acid copolymers: Mechanical and thermomechanical properties. Journal of Applied Polymer Science, 2004, 91, 2216-2222.	2.6	3
214	Effects of calcium carbonate and its purity on crystallization and melting behavior, mechanical properties, and processability of syndiotactic polypropylene. Journal of Applied Polymer Science, 2004, 92, 201-212.	2.6	77
215	Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromolecular Chemistry and Physics, 2004, 205, 2327-2338.	2.2	449
216	Effect of Nucleating Agents on Crystallization and Melting Behavior and Mechanical Properties of Nucleated Syndiotactic Poly(propylene). Macromolecular Materials and Engineering, 2004, 289, 818-827.	3.6	22

#	Article	IF	CITATIONS
217	Multiple melting behavior in isothermally crystallized poly(trimethylene terephthalate). European Polymer Journal, 2004, 40, 599-608.	5.4	107
218	Effect of calcium stearate and pimelic acid addition on mechanical properties of heterophasic isotactic polypropylene/ethylene–propylene rubber blend. Polymer Testing, 2004, 23, 533-539.	4.8	69
219	Characterization of starch/poly(ε-caprolactone) hybrid foams. Polymer Testing, 2004, 23, 651-657.	4.8	43
220	Non-isothermal melt-crystallization kinetics of poly(trimethylene terephthalate). Polymer Testing, 2004, 23, 817-826.	4.8	94
221	Influence of molecular characteristics on non-isothermal melt-crystallization kinetics of syndiotactic polypropylene. Polymer Testing, 2004, 23, 881-895.	4.8	31
222	Non-isothermal melt crystallization kinetics for ethylene–acrylic acid copolymers and ethylene–methyl acrylate–acrylic acid terpolymers. European Polymer Journal, 2004, 40, 829-838.	5.4	33
223	Influence of molecular characteristics on overall isothermal melt-crystallization behavior and equilibrium melting temperature of syndiotactic polypropylene. European Polymer Journal, 2004, 40, 1671-1682.	5.4	10
224	Preparation and characterization of jute- and flax-reinforced starch-based composite foams. Carbohydrate Polymers, 2004, 58, 53-63.	10.2	172
225	Nonisothermal melt-crystallization kinetics for three linear aromatic polyesters. Thermochimica Acta, 2003, 406, 207-220.	2.7	89
226	Characterisation of beta-chitin/poly(vinyl alcohol) blend films. Polymer Testing, 2003, 22, 381-387.	4.8	56
227	Nonisothermal bulk crystallization of high-density polyethylene via a modified depolarized light microscopy technique: Further analysis. Journal of Applied Polymer Science, 2002, 86, 1009-1022.	2.6	20
228	Application of the Avrami, Tobin, Malkin, and Urbanovici–Segal macrokinetic models to isothermal crystallization of syndiotactic polypropylene. Thermochimica Acta, 2001, 370, 37-48.	2.7	68
229	Unbiased evaluation of literature data on equilibrium melting temperature and enthalpy of fusion of perfectly syndiotactic polypropylene. Journal of Applied Polymer Science, 2001, 79, 1603-1609.	2.6	18
230	Crystallization and melting behavior in syndiotactic polypropylene: Origin of multiple melting phenomenon. Journal of Applied Polymer Science, 2001, 82, 1083-1097.	2.6	63
231	Crystalline memory effect in isothermal crystallization of syndiotactic polypropylenes: effect of fusion temperature on crystallization and melting behavior. Polymer, 2001, 42, 9617-9626.	3.8	75
232	Thermal properties and isothermal crystallization of syndiotactic polypropylenes: Differential scanning calorimetry and overall crystallization kinetics. Journal of Applied Polymer Science, 2000, 75, 44-59.	2.6	51
233	Crystalline memory effects in isothermal crystallization of syndiotactic polypropylene. Journal of Applied Polymer Science, 2000, 75, 337-346.	2.6	85
234	Isothermal melt crystallization and melting behaviour of syndiotactic polypropylene. Polymer International, 2000, 49, 1473-1482.	3.1	17

#	Article	IF	CITATIONS
235	Nonisothermal bulk crystallization and subsequent melting behavior of syndiotactic polypropylenes: Crystallization from the melt state. Journal of Applied Polymer Science, 2000, 78, 338-354.	2.6	72
236	Nonisothermal bulk crystallization studies of high density polyethylene using light depolarizing microscopy. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 681-692.	2.1	46
237	Conductive Nanocomposite Aligned Fibers of PVA-AgNPs-PEDOT/PSS. Advanced Materials Research, 0, 1033-1034, 1009-1019.	0.3	1