## Xiaokun Gu

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9001836/publications.pdf

Version: 2024-02-01

218677 223800 3,597 48 26 46 h-index citations g-index papers 48 48 48 4856 docs citations times ranked citing authors all docs

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations. Chinese Physics B, 2022, 31, 056301.                                                            | 1.4  | 10        |
| 2  | High-temperature phonon transport properties of SnSe from machine-learning interatomic potential. Journal of Physics Condensed Matter, 2021, 33, 405401.                                                                | 1.8  | 24        |
| 3  | GPU_PBTE: an efficient solver for three and four phonon scattering rates on graphics processing units. Journal of Physics Condensed Matter, 2021, 33, 495901.                                                           | 1.8  | 6         |
| 4  | The energy efficiency of interfacial solar desalination. Applied Energy, 2021, 302, 117581.                                                                                                                             | 10.1 | 60        |
| 5  | Thermal conductivity prediction by atomistic simulation methods: Recent advances and detailed comparison. Journal of Applied Physics, 2021, 130, .                                                                      | 2.5  | 36        |
| 6  | A minimal Tersoff potential for diamond silicon with improved descriptions of elastic and phonon transport properties. Journal of Physics Condensed Matter, 2020, 32, 135901.                                           | 1.8  | 9         |
| 7  | Anomalous thermal transport in metallic transition-metal nitrides originated from strong electron–phonon interactions. Materials Today Physics, 2020, 15, 100256.                                                       | 6.0  | 22        |
| 8  | Thermal conductivity of silicon at elevated temperature: Role of four-phonon scattering and electronic heat conduction. International Journal of Heat and Mass Transfer, 2020, 160, 120165.                             | 4.8  | 21        |
| 9  | Monitoring anharmonic phonon transport across interfaces in one-dimensional lattice chains. Physical Review E, 2020, 101, 022133.                                                                                       | 2.1  | 8         |
| 10 | Unification of nonequilibrium molecular dynamics and the mode-resolved phonon Boltzmann equation for thermal transport simulations. Physical Review B, 2020, 101, .                                                     | 3.2  | 49        |
| 11 | Seeking for Low Thermal Conductivity Atomic Configurations in SiGe Alloys with Bayesian Optimization. ES Energy & Environments, 2020, , .                                                                               | 1.1  | 14        |
| 12 | Revisiting phonon-phonon scattering in single-layer graphene. Physical Review B, 2019, 100, .                                                                                                                           | 3.2  | 71        |
| 13 | Thermal conductivity of MoS2/MoSe2 heterostructures: The role of lattice mismatch, interlayer rotation and species intermixing. International Journal of Heat and Mass Transfer, 2019, 143, 118583.                     | 4.8  | 17        |
| 14 | A scattering rate model for accelerated evaluation of lattice thermal conductivity bypassing anharmonic force constants. Journal of Applied Physics, 2019, 125, .                                                       | 2.5  | 6         |
| 15 | Thermal conductivity of single-layer MoS2 $(1\hat{a}^{\circ}x)$ Se2x alloys from molecular dynamics simulations with a machine-learning-based interatomic potential. Computational Materials Science, 2019, 165, 74-81. | 3.0  | 46        |
| 16 | $$ $$ $$ $$ $$ $$ $$ $$ $$                                                                                                                                                                                              | 45.6 | 238       |
| 17 | Electronic band structure of carbon honeycombs. Materials Today Physics, 2018, 5, 72-77.                                                                                                                                | 6.0  | 5         |
| 18 | Thermal conductivity of hexagonal Si, Ge, and Si1-xGex alloys from first-principles. Journal of Applied Physics, 2018, 123, .                                                                                           | 2.5  | 12        |

| #  | Article                                                                                                                                                                                      | IF                | CITATIONS   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|
| 19 | Anisotropic thermal transport in van der Waals layered alloys WSe2(1- <i>x</i> )Te2 <i>x</i> . Applied Physics Letters, 2018, 112, .                                                         | 3.3               | 32          |
| 20 | A Review of Simulation Methods in Micro/Nanoscale Heat Conduction. ES Energy & Environments, 2018,                                                                                           | 1.1               | 78          |
| 21 | HIGH TEMPERATURE THERMAL CONDUCTIVITY OF SILICON FROM MACHINE-LEARNING-BASED INTERATOMIC POTENTIAL. , 2018, , .                                                                              |                   | O           |
| 22 | On the influence of junction structures on the mechanical and thermal properties of carbon honeycombs. Carbon, 2017, 119, 278-286.                                                           | 10.3              | 56          |
| 23 | Bottom-up Design of Three-Dimensional Carbon-Honeycomb with Superb Specific Strength and High Thermal Conductivity. Nano Letters, 2017, 17, 179-185.                                         | 9.1               | 95          |
| 24 | Thermal conductivity modeling of hybrid organic-inorganic crystals and superlattices. Nano Energy, 2017, 41, 394-407.                                                                        | 16.0              | 32          |
| 25 | Probing Anisotropic Thermal Conductivity of Transition Metal Dichalcogenides MX <sub>2</sub> (M =) Tj ETQq1                                                                                  | 1 0.78431<br>21.0 | 4 rgBT /Ove |
| 26 | Effect of the accuracy of interatomic force constants on the prediction of lattice thermal conductivity. Computational Materials Science, 2017, 138, 368-376.                                | 3.0               | 15          |
| 27 | Temperature Dependence of Anisotropic Thermalâ€Conductivity Tensor of Bulk Black Phosphorus. Advanced Materials, 2017, 29, 1603297.                                                          | 21.0              | 89          |
| 28 | Revealing the Origins of 3D Anisotropic Thermal Conductivities of Black Phosphorus. Advanced Electronic Materials, 2016, 2, 1600040.                                                         | 5.1               | 85          |
| 29 | Lattice thermal conductivity of organic-inorganic hybrid perovskite CH3NH3PbI3. Applied Physics<br>Letters, 2016, 108, .                                                                     | 3.3               | 97          |
| 30 | Layer thickness-dependent phonon properties and thermal conductivity of MoS2. Journal of Applied Physics, 2016, 119, .                                                                       | 2.5               | 136         |
| 31 | Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials. Journal of Electronic Packaging, Transactions of the ASME, 2016, 138, . | 1.8               | 328         |
| 32 | Phonon transport in single-layerMo1â^'xWxS2alloy embedded withWS2nanodomains. Physical Review B, 2016, 94, .                                                                                 | 3.2               | 18          |
| 33 | Anisotropic Tuning of Graphite Thermal Conductivity by Lithium Intercalation. Journal of Physical Chemistry Letters, 2016, 7, 4744-4750.                                                     | 4.6               | 69          |
| 34 | Black Phosphorus: Revealing the Origins of 3D Anisotropic Thermal Conductivities of Black Phosphorus (Adv. Electron. Mater. 5/2016). Advanced Electronic Materials, 2016, 2, .               | 5.1               | 4           |
| 35 | PHONON TRANSPORT AND THERMAL CONDUCTIVITY IN TWO-DIMENSIONAL MATERIALS. Annual Review of Heat Transfer, 2016, 19, 1-65.                                                                      | 1.0               | 57          |

Phonon transmission across<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Mg</mml:mi><mml:mro></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml:nco></mml

| #  | Article                                                                                                                                                                                                              | IF   | Citations |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Anisotropic Thermal Transport in Organic–Inorganic Hybrid Crystal β-ZnTe(en)0.5. Journal of Physical Chemistry C, 2015, 119, 28300-28308.                                                                            | 3.1  | 16        |
| 38 | First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene. Journal of Applied Physics, 2015, $117$ , .                                                                    | 2.5  | 204       |
| 39 | Mechanical and thermal properties of nanomaterials at sub-50nm dimensions characterized using coherent EUV beams. , 2015, , .                                                                                        |      | 0         |
| 40 | A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4846-4851.           | 7.1  | 170       |
| 41 | Flexible n-type thermoelectric materials by organic intercalation of layered transition metalÂdichalcogenide TiS2. Nature Materials, 2015, 14, 622-627.                                                              | 27.5 | 612       |
| 42 | Dielectric Mismatch Mediates Carrier Mobility in Organic-Intercalated Layered TiS <sub>2</sub> . Nano Letters, 2015, 15, 6302-6308.                                                                                  | 9.1  | 62        |
| 43 | A New Regime of Nanoscale Thermal Transport: Collective Diffusion Counteracts Dissipation Inefficiency. Springer Proceedings in Physics, 2015, , 341-344.                                                            | 0.2  | 3         |
| 44 | Phonon transport in single-layer transition metal dichalcogenides: A first-principles study. Applied Physics Letters, 2014, 105, .                                                                                   | 3.3  | 309       |
| 45 | Stable planar single-layer hexagonal silicene under tensile strain and its anomalous Poisson's ratio.<br>Applied Physics Letters, 2014, 104, 081902.                                                                 | 3.3  | 49        |
| 46 | Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method. Review of Scientific Instruments, 2013, 84, 034902. | 1.3  | 120       |
| 47 | Shape dependence of slip length on patterned hydrophobic surfaces. Applied Physics Letters, 2011, 99, .                                                                                                              | 3.3  | 13        |
| 48 | Thermal conductivity of dielectric nanowires with different cross-section shapes. Chinese Physics B, 2007, 16, 3777-3782.                                                                                            | 1.3  | 15        |