Jang-Yeon Hwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9001532/publications.pdf

Version: 2024-02-01

95 papers 11,669 citations

50 h-index 98 g-index

98 all docs 98 docs citations 98 times ranked 10755 citing authors

#	Article	IF	CITATIONS
1	A review on carbon nanomaterials for <scp>Kâ€ion</scp> battery anode: Progress and perspectives. International Journal of Energy Research, 2022, 46, 4033-4070.	4.5	9
2	Stable Solid Electrolyte Interphase for Long-Life Potassium Metal Batteries. ACS Energy Letters, 2022, 7, 401-409.	17.4	32
3	Sulfurized Carbon Composite with Unprecedentedly High Tap Density for Sodium Storage. Advanced Energy Materials, 2022, 12, .	19.5	2
4	Geometrical engineering of a SPAN–graphene composite cathode for practical Li–S batteries. Journal of Materials Chemistry A, 2022, 10, 10844-10853.	10.3	15
5	Effect of a self-assembling La ₂ (Ni _{0.5} Li _{0.5})O ₄ and amorphous garnet <i>i>-</i> type solid electrolyte composite on a layered cathode material in all-solid-state batteries. RSC Advances, 2022, 12, 14209-14222.	3.6	3
6	Triggering the theoretical capacity of Na1.1V3O7.9 nanorod cathode by polypyrrole coating for high-energy zinc-ion batteries. Chemical Engineering Journal, 2022, 446, 137069.	12.7	23
7	Recent Achievements in Experimental and Computational Studies of Positive Electrode Materials for Nonaqueous Ca- and Al-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 9209-9227.	3.1	5
8	Advancement in graphene-based nanocomposites as high capacity anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 2628-2661.	10.3	39
9	C-Na3V1.96Fe0.04(PO4)3/Fe2P nanoclusters with stable charge-transfer interface for high-power sodium ion batteries. Chemical Engineering Journal, 2021, 404, 126974.	12.7	25
10	A novel reduced graphene oxide based absorber for augmenting the water yield and thermal performance of solar desalination unit. Materials Letters, 2021, 286, 128867.	2.6	45
11	A new material discovery platform of stable layered oxide cathodes for K-ion batteries. Energy and Environmental Science, 2021, 14, 5864-5874.	30.8	30
12	A case study of SARS-CoV-2 transmission behavior in a severely air-polluted city (Delhi, India) and the potential usage of graphene based materials for filtering air-pollutants and controlling/monitoring the COVID-19 pandemic. Environmental Sciences: Processes and Impacts, 2021, 23, 923-946.	3.5	7
13	Recent Progress in Electrolyte Development and Design Strategies for Nextâ€Generation Potassiumâ€lon Batteries. Batteries and Supercaps, 2021, 4, 1428-1450.	4.7	29
14	Critical Role of Functional Groups Containing N, S, and O on Graphene Surface for Stable and Fast Charging Li‧ Batteries. Small, 2021, 17, e2007242.	10.0	23
15	Long-Lasting Solid Electrolyte Interphase for Stable Li-Metal Batteries. ACS Energy Letters, 2021, 6, 2153-2161.	17.4	41
16	Microwave-Assisted Rapid Synthesis of NH4V4O10 Layered Oxide: A High Energy Cathode for Aqueous Rechargeable Zinc Ion Batteries. Nanomaterials, 2021, 11, 1905.	4.1	8
17	Secondary transmission of SARS-CoV-2 through wastewater: Concerns and tactics for treatment to effectively control the pandemic. Journal of Environmental Management, 2021, 290, 112668.	7.8	36
18	Multiscale Understanding of Covalently Fixed Sulfur–Polyacrylonitrile Composite as Advanced Cathode for Metal–Sulfur Batteries. Advanced Science, 2021, 8, e2101123.	11.2	27

#	Article	IF	CITATIONS
19	Cationic and transition metal co-substitution strategy of O3-type NaCrO2 cathode for high-energy sodium-ion batteries. Energy Storage Materials, 2021, 41, 183-195.	18.0	42
20	Chromium doping into NASICON-structured Na3V2(PO4)3 cathode for high-power Na-ion batteries. Chemical Engineering Journal, 2021, 422, 130052.	12.7	58
21	Augmented performance of solar desalination unit by utilization of nano-silicon coated glass cover for promoting drop-wise condensation. Desalination, 2021, 515, 115191.	8.2	34
22	Validating the Structural (In)stability of P3- and P2-Na _{0.67} Mg _{0.1} Mn _{0.9} O ₂ -Layered Cathodes for Sodium-Ion Batteries: A Time-Decisive Approach. ACS Applied Materials & Samp; Interfaces, 2021, 13, 53877-53891.	8.0	10
23	Nano/Microstructured Silicon–Carbon Hybrid Composite Particles Fabricated with Corn Starch Biowaste as Anode Materials for Li-Ion Batteries. Nano Letters, 2020, 20, 625-635.	9.1	164
24	Role of Li″on Depletion on Electrode Surface: Underlying Mechanism for Electrodeposition Behavior of Lithium Metal Anode. Advanced Energy Materials, 2020, 10, 2002390.	19.5	115
25	Investigation of superior sodium storage and reversible Na ₂ S conversion reactions in a porous NiS ₂ @C composite using <i>in operando</i> X-ray diffraction. Journal of Materials Chemistry A, 2020, 8, 24401-24407.	10.3	14
26	High lithium storage properties in a manganese sulfide anode <i>via</i> an intercalation-cum-conversion reaction. Journal of Materials Chemistry A, 2020, 8, 17537-17549.	10.3	15
27	Potassium–Oxygen Batteries: Significance, Challenges, and Prospects. Journal of Physical Chemistry Letters, 2020, 11, 7849-7856.	4.6	18
28	Sustainable Encapsulation Strategy of Silicon Nanoparticles in Microcarbon Sphere for High-Performance Lithium-Ion Battery Anode. ACS Sustainable Chemistry and Engineering, 2020, 8, 14150-14158.	6.7	37
29	Tungsten Oxide/Zirconia as a Functional Polysulfide Mediator for High-Performance Lithium–Sulfur Batteries. ACS Energy Letters, 2020, 5, 3168-3175.	17.4	38
30	Additives Engineered Nonflammable Electrolyte for Safer Potassium Ion Batteries. Advanced Functional Materials, 2020, 30, 2001934.	14.9	77
31	Initial investigation and evaluation of potassium metal as an anode for rechargeable potassium batteries. Journal of Materials Chemistry A, 2020, 8, 16718-16737.	10.3	44
32	Multidimensional Na ₄ VMn _{0.9} Cu _{0.1} (PO ₄) ₃ /C cotton-candy cathode materials for high energy Na-ion batteries. Journal of Materials Chemistry A, 2020, 8, 12055-12068.	10.3	48
33	High-energy O3-Na _{1â^2x} Ca _x [Ni _{0.5} Mn _{0.5}]O ₂ cathodes for long-life sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 13776-13786.	10.3	46
34	Recent Developments and Future Challenges in Designing Rechargeable Potassium-Sulfur and Potassium-Selenium Batteries. Energies, 2020, 13, 2791.	3.1	13
35	Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments. ACS Energy Letters, 2020, 5, 2376-2400.	17.4	303
36	Density Functional Theory Investigation of Mixed Transition Metals in Olivine and Tavorite Cathode Materials for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 16376-16386.	8.0	22

#	Article	IF	CITATIONS
37	Investigation of K-ion storage performances in a bismuth sulfide-carbon nanotube composite anode. RSC Advances, 2020, 10, 6536-6539.	3.6	4
38	Electrolyte Engineering Enables High Stability and Capacity Alloying Anodes for Sodium and Potassium Ion Batteries. ACS Energy Letters, 2020, 5, 766-776.	17.4	134
39	An Empirical Model for the Design of Batteries with High Energy Density. ACS Energy Letters, 2020, 5, 807-816.	17.4	97
40	Toward the Sustainable Lithium Metal Batteries with a New Electrolyte Solvation Chemistry. Advanced Energy Materials, 2020, 10, 2000567.	19.5	111
41	Engineering Sodium-Ion Solvation Structure to Stabilize Sodium Anodes: Universal Strategy for Fast-Charging and Safer Sodium-Ion Batteries. Nano Letters, 2020, 20, 3247-3254.	9.1	78
42	A 4 V Class Potassium Metal Battery with Extremely Low Overpotential. ACS Nano, 2019, 13, 9306-9314.	14.6	76
43	Highly wrinkled carbon tubes as an advanced anode for K-ion full batteries. Journal of Materials Chemistry A, 2019, 7, 20675-20682.	10.3	29
44	New Insight on the Role of Electrolyte Additives in Rechargeable Lithium Ion Batteries. ACS Energy Letters, 2019, 4, 2613-2622.	17.4	160
45	Nano-compacted Li ₂ S/Graphene Composite Cathode for High-Energy Lithium–Sulfur Batteries. ACS Energy Letters, 2019, 4, 2787-2795.	17.4	37
46	Layered K _{0.28} MnO ₂ \hat{A} 0.15H ₂ O as a Cathode Material for Potassium-Ion Intercalation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43312-43319.	8.0	25
47	A new P2-type layered oxide cathode with superior full-cell performances for K-ion batteries. Journal of Materials Chemistry A, 2019, 7, 21362-21370.	10.3	61
48	Potassium vanadate as a new cathode material for potassium-ion batteries. Journal of Power Sources, 2019, 432, 24-29.	7.8	53
49	Adiponitrile (C ₆ H ₈ N ₂): A New Biâ€Functional Additive for Highâ€Performance Liâ€Metal Batteries. Advanced Functional Materials, 2019, 29, 1902496.	14.9	115
50	Degradation Mechanism of Ni-Enriched NCA Cathode for Lithium Batteries: Are Microcracks Really Critical?. ACS Energy Letters, 2019, 4, 1394-1400.	17.4	290
51	Customizing a Li–metal battery that survives practical operating conditions for electric vehicle applications. Energy and Environmental Science, 2019, 12, 2174-2184.	30.8	130
52	Trimethylsilyl azide (C3H9N3Si): a highly efficient additive for tailoring fluoroethylene carbonate (FEC) based electrolytes for Li-metal batteries. Journal of Materials Chemistry A, 2019, 7, 13441-13448.	10.3	34
53	K0.54[Co0.5Mn0.5]O2: New cathode with high power capability for potassium-ion batteries. Nano Energy, 2019, 61, 284-294.	16.0	120
54	High-performance Ti-doped O3-type Na[Tix(Ni0.6Co0.2Mn0.2)1-x]O2 cathodes for practical sodium-ion batteries. Journal of Power Sources, 2019, 422, 1-8.	7.8	51

#	Article	IF	CITATIONS
55	A New P2â€Type Layered Oxide Cathode with Extremely High Energy Density for Sodiumâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1803346.	19.5	143
56	Nano/Microstructured Silicon–Graphite Composite Anode for High-Energy-Density Li-Ion Battery. ACS Nano, 2019, 13, 2624-2633.	14.6	219
57	Carbon-Free TiO ₂ Microspheres as Anode Materials for Sodium Ion Batteries. ACS Energy Letters, 2019, 4, 494-501.	17.4	63
58	Quaternary Transition Metal Oxide Layered Framework: O3-Type Na[Ni _{0.32} Fe _{0.13} Co _{0.15} Mn _{0.40}]O ₂ Cathode Material for High-Performance Sodium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 13500-13507.	3.1	39
59	Toward High-Safety Potassium–Sulfur Batteries Using a Potassium Polysulfide Catholyte and Metal-Free Anode. ACS Energy Letters, 2018, 3, 540-541.	17.4	99
60	Multiwalled Carbon Nanotubes Anode in Lithium-Ion Battery with LiCoO ₂ , Li[Ni _{1/3} Co _{1/3} Mn _{1/3}]O ₂ , and LiFe _{1/4} Mn _{1/2} Co _{1/4} PO ₄ Cathodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 3225-3232.	6.7	47
61	New Insights on Graphite Anode Stability in Rechargeable Batteries: Li Ion Coordination Structures Prevail over Solid Electrolyte Interphases. ACS Energy Letters, 2018, 3, 335-340.	17.4	217
62	Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17985-17993.	8.0	82
63	Designing a Highâ€Performance Lithium–Sulfur Batteries Based on Layered Double Hydroxides–Carbon Nanotubes Composite Cathode and a Dualâ€Functional Graphene–Polypropylene–Al ₂ O ₃ Separator. Advanced Functional Materials, 2018. 28. 1704294.	14.9	135
64	Controlling the Wettability between Freestanding Electrode and Electrolyte for High Energy Density Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2018, 165, A5006-A5013.	2.9	31
65	Recent Progress in Rechargeable Potassium Batteries. Advanced Functional Materials, 2018, 28, 1802938.	14.9	518
66	Capacity Degradation Mechanism and Cycling Stability Enhancement of AlF ₃ -Coated Nanorod Gradient Na[Ni _{0.65} Co _{0.08} Mn _{0.27}]O ₂ Cathode for Sodium-Ion Batteries. ACS Nano, 2018, 12, 12912-12922.	14.6	82
67	Superior lithium/potassium storage capability of nitrogen-rich porous carbon nanosheets derived from petroleum coke. Journal of Materials Chemistry A, 2018, 6, 12551-12558.	10.3	79
68	Minimizing the Electrolyte Volume in Li–S Batteries: A Step Forward to High Gravimetric Energy Density. Advanced Energy Materials, 2018, 8, 1801560.	19.5	68
69	Development of P3-K _{0.69} CrO ₂ as an ultra-high-performance cathode material for K-ion batteries. Energy and Environmental Science, 2018, 11, 2821-2827.	30.8	157
70	High performance potassium–sulfur batteries based on a sulfurized polyacrylonitrile cathode and polyacrylic acid binder. Journal of Materials Chemistry A, 2018, 6, 14587-14593.	10.3	89
71	Simultaneous MgO coating and Mg doping of Na[Ni _{0.5} Mn _{0.5}]O ₂ cathode: facile and customizable approach to high-voltage sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 16854-16862.	10.3	93
72	Recent research trends in Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 11582-11605.	10.3	199

#	Article	IF	CITATIONS
73	Graphene Decorated by Indium Sulfide Nanoparticles as High-Performance Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 23723-23730.	8.0	48
74	Sodium-ion batteries: present and future. Chemical Society Reviews, 2017, 46, 3529-3614.	38.1	3,436
75	Improved electrochemical performance of boron-doped carbon-coated lithium titanate as an anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 2802-2810.	10.3	79
76	Na Storage Capability Investigation of a Carbon Nanotube-Encapsulated Fe _{1–<i>x</i>} S Composite. ACS Energy Letters, 2017, 2, 364-372.	17.4	176
77	Micro-Intertexture Carbon-Free Iron Sulfides as Advanced High Tap Density Anodes for Rechargeable Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39416-39424.	8.0	45
78	Electrochemical Properties of Sulfurized-Polyacrylonitrile Cathode for Lithium–Sulfur Batteries: Effect of Polyacrylic Acid Binder and Fluoroethylene Carbonate Additive. Journal of Physical Chemistry Letters, 2017, 8, 5331-5337.	4.6	101
79	Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23671-23680.	10.3	107
80	Microsphere Na _{0.65} [Ni _{0.17} Co _{0.11} Mn _{0.72}]O ₂ Cathode Material for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44534-44541.	8.0	46
81	High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni _{0.85} Co _{0.05} Mn _{0.10}]O ₂ cathode. Energy and Environmental Science, 2016, 9, 2152-2158.	30.8	269
82	Effect of nickel and iron on structural and electrochemical properties of O3 type layer cathode materials for sodium-ion batteries. Journal of Power Sources, 2016, 324, 106-112.	7.8	58
83	Novel Cathode Materials for Naâ€lon Batteries Composed of Spokeâ€Like Nanorods of Na[Ni _{0.61} Co _{0.12} Mn _{0.27}]O ₂ Assembled in Spherical Secondary Particles. Advanced Functional Materials, 2016, 26, 8083-8093.	14.9	78
84	Li-S Batteries: A Scaled-Up Lithium (Ion)-Sulfur Battery: Newly Faced Problems and Solutions (Adv.) Tj ETQq0 0 0 r	gBT _. /Over	logk 10 Tf 50
85	A comprehensive study of the role of transition metals in O3-type layered Na[Ni _x Co _y Mn _z]O ₂ (x = $1/3$, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 17952-17959.	10.3	110
86	A Scaledâ€Up Lithium (Ion)â€Sulfur Battery: Newly Faced Problems and Solutions. Advanced Materials Technologies, 2016, 1, 1600052.	5.8	29
87	Transition metal carbide-based materials: synthesis and applications in electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 10379-10393.	10.3	184
88	Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1867-1875.	8.0	138
89	Highâ€Energy, Highâ€Rate, Lithium–Sulfur Batteries: Synergetic Effect of Hollow TiO ₂ â€Webbed Carbon Nanotubes and a Dual Functional Carbonâ€Paper Interlayer. Advanced Energy Materials, 2016, 6, 1501480.	19.5	308
90	Rational design of silicon-based composites for high-energy storage devices. Journal of Materials Chemistry A, 2016, 4, 5366-5384.	10.3	154

#	Article	IF	CITATIONS
91	High-Performance Lithium–Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode–Electrolyte Interface. ACS Applied Materials & Interfaces, 2016, 8, 983-987.	8.0	104
92	Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes. Nano Energy, 2015, 16, 218-226.	16.0	128
93	Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nature Communications, 2015, 6, 6865.	12.8	210
94	High Electrochemical Performances of Microsphere C-TiO ₂ Anode for Sodium-Ion Battery. ACS Applied Materials & Diterfaces, 2014, 6, 11295-11301.	8.0	213
95	High Capacity O3-Type Na[Li _{0.05} (Ni _{0.25} Fe _{0.25} Mn _{0.5}) _{0.95}]O _{2<cathode 2014,="" 26,="" 6165-6171.<="" batteries.="" chemistry="" for="" ion="" materials,="" of="" sodium="" td=""><td>:/s@lp/></td><td>175</td></cathode>}	:/s@lp/>	175