
Mamuka Kvaratskhelia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9000246/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8690-8695.	7.1	178
2	Multimode, Cooperative Mechanism of Action of Allosteric HIV-1 Integrase Inhibitors. Journal of Biological Chemistry, 2012, 287, 16801-16811.	3.4	167
3	Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome. Science, 2017, 355, 89-92.	12.6	166
4	Dynamic Modulation of HIV-1 Integrase Structure and Function by Cellular Lens Epithelium-derived Growth Factor (LEDGF) Protein. Journal of Biological Chemistry, 2008, 283, 31802-31812.	3.4	115
5	Structural and mechanistic bases for a potent HIV-1 capsid inhibitor. Science, 2020, 370, 360-364.	12.6	114
6	A New Class of Multimerization Selective Inhibitors of HIV-1 Integrase. PLoS Pathogens, 2014, 10, e1004171.	4.7	112
7	HIV-1 Integrase Binds the Viral RNA Genome and Is Essential during Virion Morphogenesis. Cell, 2016, 166, 1257-1268.e12.	28.9	110
8	Molecular mechanisms of retroviral integration site selection. Nucleic Acids Research, 2014, 42, 10209-10225.	14.5	107
9	Nuclear pore heterogeneity influences HIV-1 infection and the antiviral activity of MX2. ELife, 2018, 7, .	6.0	100
10	LEDGF/p75 interacts with mRNA splicing factors and targets HIV-1 integration to highly spliced genes. Genes and Development, 2015, 29, 2287-2297.	5.9	90
11	The A128T Resistance Mutation Reveals Aberrant Protein Multimerization as the Primary Mechanism of Action of Allosteric HIV-1 Integrase Inhibitors. Journal of Biological Chemistry, 2013, 288, 15813-15820.	3.4	85
12	N6-Methyladenosine–binding proteins suppress HIV-1 infectivity and viral production. Journal of Biological Chemistry, 2018, 293, 12992-13005.	3.4	79
13	Structure of the Brd4 ET domain bound to a C-terminal motif from Î ³ -retroviral integrases reveals a conserved mechanism of interaction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2086-2091.	7.1	65
14	Altering murine leukemia virus integration through disruption of the integrase and BET protein family interaction. Nucleic Acids Research, 2014, 42, 5917-5928.	14.5	63
15	TALEN Knockout of the <i>PSIP1</i> Gene in Human Cells: Analyses of HIV-1 Replication and Allosteric Integrase Inhibitor Mechanism. Journal of Virology, 2014, 88, 9704-9717.	3.4	63
16	Interaction of the HIV-1 Intasome with Transportin 3 Protein (TNPO3 or TRN-SR2). Journal of Biological Chemistry, 2012, 287, 34044-34058.	3.4	52
17	An Allosteric Mechanism for Inhibiting HIV-1 Integrase with a Small Molecule. Molecular Pharmacology, 2009, 76, 824-832.	2.3	48
18	Sec24C is an HIV-1 host dependency factor crucial for virus replication. Nature Microbiology, 2021, 6, 435-444.	13.3	48

Mamuka Kvaratskhelia

#	Article	IF	CITATIONS
19	HIV-1 integrase tetramers are the antiviral target of pyridine-based allosteric integrase inhibitors. ELife, 2019, 8, .	6.0	41
20	The mechanism of H171T resistance reveals the importance of Nδ-protonated His171 for the binding of allosteric inhibitor BI-D to HIV-1 integrase. Retrovirology, 2014, 11, 100.	2.0	39
21	Integrase-RNA interactions underscore the critical role of integrase in HIV-1 virion morphogenesis. ELife, 2020, 9, .	6.0	35
22	Resistance to pyridine-based inhibitor KF116 reveals an unexpected role of integrase in HIV-1 Gag-Pol polyprotein proteolytic processing. Journal of Biological Chemistry, 2017, 292, 19814-19825.	3.4	31
23	Allosteric HIVâ€1 integrase inhibitors promote aberrant protein multimerization by directly mediating interâ€subunit interactions: Structural and thermodynamic modeling studies. Protein Science, 2016, 25, 1911-1917.	7.6	30
24	Allosteric HIV-1 Integrase Inhibitors Lead to Premature Degradation of the Viral RNA Genome and Integrase in Target Cells. Journal of Virology, 2017, 91, .	3.4	30
25	The Competitive Interplay between Allosteric HIV-1 Integrase Inhibitor BI/D and LEDGF/p75 during the Early Stage of HIV-1 Replication Adversely Affects Inhibitor Potency. ACS Chemical Biology, 2016, 11, 1313-1321.	3.4	29
26	A Critical Role of the C-terminal Segment for Allosteric Inhibitor-induced Aberrant Multimerization of HIV-1 Integrase. Journal of Biological Chemistry, 2014, 289, 26430-26440.	3.4	28
27	Interactions of the Disordered Domain II of Hepatitis C Virus NS5A with Cyclophilin A, NS5B, and Viral RNA Show Extensive Overlap. ACS Infectious Diseases, 2016, 2, 839-851.	3.8	24
28	A new structural insight into XPA–DNA interactions. Bioscience Reports, 2014, 34, e00162.	2.4	21
29	A New Class of Allosteric HIV-1 Integrase Inhibitors Identified by Crystallographic Fragment Screening of the Catalytic Core Domain. Journal of Biological Chemistry, 2016, 291, 23569-23577.	3.4	20
30	The FACT Complex Promotes Avian Leukosis Virus DNA Integration. Journal of Virology, 2017, 91, .	3.4	18
31	An Isoquinoline Scaffold as a Novel Class of Allosteric HIV-1 Integrase Inhibitors. ACS Medicinal Chemistry Letters, 2019, 10, 215-220.	2.8	18
32	HTLV-1 Tax-1 interacts with SNX27 to regulate cellular localization of the HTLV-1 receptor molecule, GLUT1. PLoS ONE, 2019, 14, e0214059.	2.5	18
33	A highly potent and safe pyrrolopyridine-based allosteric HIV-1 integrase inhibitor targeting host LEDGF/p75-integrase interaction site. PLoS Pathogens, 2021, 17, e1009671.	4.7	16
34	Identification of glycosylation sites in the SU component of the Avian Sarcoma/Leukosis virus Envelope Glycoprotein (Subgroup A) by mass spectrometry. Virology, 2004, 326, 171-181.	2.4	14
35	Use of chemical modification and mass spectrometry to identify substrate-contacting sites in proteinaceous RNase P, a tRNA processing enzyme. Nucleic Acids Research, 2016, 44, 5344-5355.	14.5	14
36	Discovery of dihydroxyindole-2-carboxylic acid derivatives as dual allosteric HIV-1 Integrase and Reverse Transcriptase associated Ribonuclease H inhibitors. Antiviral Research, 2020, 174, 104671.	4.1	14

Mamuka Kvaratskhelia

#	Article	IF	CITATIONS
37	Multimodal Functionalities of HIV-1 Integrase. Viruses, 2022, 14, 926.	3.3	14
38	Exploring the Free-Energy Landscape and Thermodynamics of Protein-Protein Association. Biophysical Journal, 2020, 119, 1226-1238.	0.5	12
39	Development of Potent Antiviral Drugs Inspired by Viral Hexameric DNA-Packaging Motors with Revolving Mechanism. Journal of Virology, 2016, 90, 8036-8046.	3.4	11
40	Computational and synthetic approaches for developing Lavendustin B derivatives as allosteric inhibitors of HIV-1 integrase. European Journal of Medicinal Chemistry, 2016, 123, 673-683.	5.5	10
41	Stability of the HTLV-1 Antisense-Derived Protein, HBZ, Is Regulated by the E3 Ubiquitin-Protein Ligase, UBR5. Frontiers in Microbiology, 2018, 9, 80.	3.5	10
42	Methods for the Analyses of Inhibitor-Induced Aberrant Multimerization of HIV-1 Integrase. Methods in Molecular Biology, 2016, 1354, 149-164.	0.9	8
43	Identification and Characterization of HTLV-1 HBZ Post-Translational Modifications. PLoS ONE, 2014, 9, e112762.	2.5	8
44	HIV-1 integrase binding to genomic RNA 5′-UTR induces local structural changes in vitro and in virio. Retrovirology, 2021, 18, 37.	2.0	6
45	ATR prevents Ca 2+ overloadâ€induced necrotic cell death through phosphorylationâ€mediated inactivation of PARP1 without DNA damage signaling. FASEB Journal, 2021, 35, e21373.	0.5	4
46	Identification and Optimization of a Novel HIV-1 Integrase Inhibitor. ACS Omega, 2022, 7, 4482-4491.	3.5	4
47	Dynamic Interconversions of HCV Helicase Binding Modes on the Nucleic Acid Substrate. ACS Infectious Diseases, 2017, 3, 99-109.	3.8	3
48	HIV-1 Integrase-Targeted Short Peptides Derived from a Viral Protein R Sequence. Molecules, 2018, 23, 1858.	3.8	3
49	Structural studies and biological evaluation of T30695 variants modified with single chiral glycerol-T reveal the importance of LEDGF/p75 for the aptamer anti-HIV-integrase activities. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 351-361.	2.4	1
50	Biophysical characterization of features of RNA helicase A that confer translational control of retroviral and selected cellular mRNAs. FASEB Journal, 2010, 24, 499.8.	0.5	0
51	Isolation of a Novel Complex Between Human NER Proteins XPC and XPA. FASEB Journal, 2019, 33, 457.23.	0.5	0