
Paul M Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8998592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase-variable bacteria simultaneously express multiple capsules. Microbiology (United Kingdom), 2021, 167, .	1.8	2
2	Polysaccharide Capsules Equip the Human Symbiont Bacteroides thetaiotaomicron to Modulate Immune Responses to a Dominant Antigen in the Intestine. Journal of Immunology, 2020, 204, 1035-1046.	0.8	26
3	Immunomodulatory Roles of Polysaccharide Capsules in the Intestine. Frontiers in Immunology, 2020, 11, 690.	4.8	23
4	Strength of tonic T cell receptor signaling instructs T follicular helper cell–fate decisions. Nature Immunology, 2020, 21, 1384-1396.	14.5	25
5	Tonic TCR Signaling Inversely Regulates the Basal Metabolism of CD4+ T Cells. ImmunoHorizons, 2020, 4, 485-497.	1.8	14
6	Diet modulates colonic T cell responses by regulating the expression of a <i>Bacteroides thetaiotaomicron</i> antigen. Science Immunology, 2019, 4, .	11.9	70
7	Tuning T Cell Signaling Sensitivity Alters the Behavior of CD4+ T Cells during an Immune Response. Journal of Immunology, 2018, 200, 3429-3437.	0.8	9
8	Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science, 2018, 360, 204-208.	12.6	187
9	Loss of Navl ² 4-Mediated Regulation of Sodium Currents in Adult Purkinje Neurons Disrupts Firing and Impairs Motor Coordination and Balance. Cell Reports, 2017, 19, 532-544.	6.4	27
10	The TCR Takes Some Immune Responsibility. Immunity, 2017, 47, 803-804.	14.3	1
11	Clec16a is Critical for Autolysosome Function and Purkinje Cell Survival. Scientific Reports, 2016, 6, 23326.	3.3	31
12	Functional Heterogeneity in CD4+ T Cell Responses Against a Bacterial Pathogen. Frontiers in Immunology, 2015, 6, 621.	4.8	12
13	Colitogenic Bacteroides thetaiotaomicron Antigens Access Host Immune Cells in a Sulfatase-Dependent Manner via Outer Membrane Vesicles. Cell Host and Microbe, 2015, 17, 672-680.	11.0	179
14	Force-Regulated In Situ TCR–Peptide-Bound MHC Class II Kinetics Determine Functions of CD4+ T Cells. Journal of Immunology, 2015, 195, 3557-3564.	0.8	92
15	Self-pMHCII complexes are variably expressed in the thymus and periphery independent of mRNA expression but dependent on the activation state of the APCs. Molecular Immunology, 2015, 63, 428-436.	2.2	0
16	The Ability To Rearrange Dual TCRs Enhances Positive Selection, Leading to Increased Allo- and Autoreactive T Cell Repertoires. Journal of Immunology, 2014, 193, 1778-1786.	0.8	22
17	c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nature Immunology, 2014, 15, 884-893.	14.5	85
18	Intrinsic CD4+ T cell sensitivity and response to a pathogen are set and sustained by avidity for thymic and peripheral complexes of self peptide and MHC. Nature Immunology, 2014, 15, 266-274.	14.5	155

PAUL M ALLEN

#	Article	IF	CITATIONS
19	L-Myc expression by dendritic cells is required for optimal T-cell priming. Nature, 2014, 507, 243-247.	27.8	87
20	Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nature Reviews Immunology, 2014, 14, 377-391.	22.7	1,043
21	Both positive and negative effects on immune responses by expression of a second class II MHC molecule. Molecular Immunology, 2014, 62, 199-208.	2.2	5
22	T cell immunodominance is dictated by the positively selecting self-peptide. ELife, 2014, 3, e01457.	6.0	10
23	Self-awareness: How self-peptide/MHC complexes are essential in the development of T cells. Molecular Immunology, 2013, 55, 186-189.	2.2	13
24	Subtle changes in TCRα CDR1 profoundly increase the sensitivity of CD4 T cells. Molecular Immunology, 2013, 53, 283-294.	2.2	9
25	Dual Receptor T Cells Mediate Pathologic Alloreactivity in Patients with Acute Graft-Versus-Host Disease. Science Translational Medicine, 2013, 5, 188ra74.	12.4	29
26	Distinct CD4 ⁺ helper T cells involved in primary and secondary responses to infection. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9511-9516.	7.1	63
27	Dynamics of CD4+ T Cell Responses against <i>Listeria monocytogenes</i> . Journal of Immunology, 2012, 189, 5250-5256.	0.8	7
28	A voltage-gated sodium channel is essential for the positive selection of CD4+ T cells. Nature Immunology, 2012, 13, 880-887.	14.5	93
29	How the TCR balances sensitivity and specificity for the recognition of self and pathogens. Nature Immunology, 2012, 13, 121-128.	14.5	185
30	Alloreactivity is limited by the endogenous peptide repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3695-3700.	7.1	32
31	Donor Dual TCR T Cells Preferentially Expand and Mediate Pathologic Alloreactivity in Acute Graft Versus Host Disease. Blood, 2011, 118, 1972-1972.	1.4	0
32	Trpm4 Differentially Regulates Th1 and Th2 Function by Altering Calcium Signaling and NFAT Localization. Journal of Immunology, 2010, 185, 2836-2846.	0.8	81
33	High-affinity T cell receptor differentiates cognate peptide–MHC and altered peptide ligands with distinct kinetics and thermodynamics. Molecular Immunology, 2010, 47, 1793-1801.	2.2	23
34	Cutting Edge: Highly Alloreactive Dual TCR T Cells Play a Dominant Role in Graft-versus-Host Disease. Journal of Immunology, 2009, 182, 6639-6643.	0.8	46
35	An endogenous peptide positively selects and augments the activation and survival of peripheral CD4+ T cells. Nature Immunology, 2009, 10, 1155-1161.	14.5	93
36	Themis imposes new law and order on positive selection. Nature Immunology, 2009, 10, 805-806.	14.5	11

PAUL M ALLEN

#	Article	IF	CITATIONS
37	An Antibiotic-Responsive Mouse Model of Fulminant Ulcerative Colitis. PLoS Medicine, 2008, 5, e41.	8.4	109
38	Tumors induce regulatory dendritic cells that suppress CD8+ T cell antitumor immunity. FASEB Journal, 2008, 22, 1078.4.	0.5	0
39	Making Antigen Presentable. Journal of Immunology, 2007, 179, 3-4.	0.8	4
40	Alloreactive T cells respond specifically to multiple distinct peptide-MHC complexes. Nature Immunology, 2007, 8, 388-397.	14.5	127
41	Specificity of T-cell alloreactivity. Nature Reviews Immunology, 2007, 7, 942-953.	22.7	208
42	The Study of High-Affinity TCRs Reveals Duality in T Cell Recognition of Antigen: Specificity and Degeneracy. Journal of Immunology, 2006, 177, 6911-6919.	0.8	50
43	Defining Yourself: Tolerance Development in the Immune System. Journal of Immunology, 2006, 177, 1369-1372.	0.8	5
44	Initiation of an Autoimmune Response: Insights from a Transgenic Model of Rheumatoid Arthritis. Immunologic Research, 2005, 32, 005-014.	2.9	37
45	Class II-restricted T cell receptor engineered in vitro for higher affinity retains peptide specificity and function. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19033-19038.	7.1	94
46	Massive Thymic Deletion Results in Systemic Autoimmunity through Elimination of CD4+ CD25+ T Regulatory Cells. Journal of Experimental Medicine, 2004, 199, 323-335.	8.5	64
47	Staging the Initiation of Autoantibody-Induced Arthritis: A Critical Role for Immune Complexes. Journal of Immunology, 2004, 172, 7694-7702.	0.8	133
48	Despite ubiquitous autoantigen expression, arthritogenic autoantibody response initiates in the local lymph node. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14368-14373.	7.1	72
49	Dynamic visualization of a joint-specific autoimmune response through positron emission tomography. Nature Immunology, 2002, 3, 366-372.	14.5	118
50	THEIMMUNOLOGICALSYNAPSE. Annual Review of Immunology, 2001, 19, 375-396.	21.8	821
51	Kissing cousins: immunological and neurological synapses. Nature Immunology, 2001, 2, 575-576.	14.5	30
52	Structural and Functional Consequences of Altering a Peptide MHC Anchor Residue. Journal of Immunology, 2001, 166, 3345-3354.	0.8	102
53	Essential Role of Neutrophils in the Initiation and Progression of a Murine Model of Rheumatoid Arthritis. Journal of Immunology, 2001, 167, 1601-1608.	0.8	537
54	Two MHC Surface Amino Acid Differences Distinguish Foreign Peptide Recognition from Autoantigen Specificity. Journal of Immunology, 2001, 166, 4005-4011.	0.8	13

PAUL M ALLEN

#	Article	IF	CITATIONS
55	Molecular Basis for Recognition of an Arthritic Peptide and a Foreign Epitope on Distinct MHC Molecules by a Single TCR. Journal of Immunology, 2000, 164, 5788-5796.	0.8	79
56	A Kinetic Threshold between Negative and Positive Selection Based on the Longevity of the T Cell Receptor–Ligand Complex. Journal of Experimental Medicine, 1999, 189, 1531-1544.	8.5	112
57	The Immunological Synapse: A Molecular Machine Controlling T Cell Activation. Science, 1999, 285, 221-227.	12.6	2,861
58	High- and Low-Potency Ligands with Similar Affinities for the TCR. Immunity, 1998, 9, 817-826.	14.3	296
59	The Study of Selfâ€Tolerance Using Murine Haemoglobin as a Model Self Antigen. Novartis Foundation Symposium, 1998, 215, 41-53.	1.1	2
60	Altered T Cell Receptor Ligands Trigger a Subset of Early T Cell Signals. Immunity, 1996, 5, 125-135.	14.3	155
61	Essential flexibility in the T-cell recognition of antigen. Nature, 1996, 380, 495-498.	27.8	305
62	Signalling Events in the Anergy Induction of T Helper 1 Cells. Novartis Foundation Symposium, 1995, 195, 189-202.	1.1	2
63	Tickling the TCR: selective T-cell functions stimulated by altered peptide ligands. Trends in Immunology, 1993, 14, 602-609.	7.5	405
64	Induction of T-cell anergy by altered T-cell-receptor ligand on live antigen-presenting cells. Nature, 1993, 363, 156-159.	27.8	592
65	Tolerance to Self and the Processing and Presentation of Self Antigens. International Reviews of Immunology, 1993, 10, 313-319.	3.3	2
66	Approachable Immunology: <i>Cellular and Molecular Immunology</i> . Abul K. Abbas, Andrew R. Lichtman, and Jordan S. Pober. Saunders, Philadelphia, PA, 1991, xii, 417 pp., illus. Paper, \$26.95. Supplementary slide set, \$250 Science, 1991, 253, 806-806.	12.6	0
67	Approachable Immunology: <i>Cellular and Molecular Immunology</i> . Abul K. Abbas, Andrew R. Lichtman, and Jordan S. Pober. Saunders, Philadelphia, PA, 1991, xii, 417 pp., illus. Paper, \$26.95. Supplementary slide set, \$250 Science, 1991, 253, 806-806.	12.6	0
68	Thymic cortical epithelial cells lack full capacity for antigen presentation. Nature, 1989, 340, 557-559.	27.8	83
69	Identification of the T-cell and Ia contact residues of a T-cell antigenic epitope. Nature, 1987, 327, 713-715.	27.8	312
70	T-Cell Recognition of Lysozyme: The Biochemical Basis of Presentation. Immunological Reviews, 1987, 98, 171-187.	6.0	134
71	Binding of immunogenic peptides to la histocompatibility molecules. Nature, 1985, 317, 359-361.	27.8	1,187
72	Antigen processing and presentation by macrophages. American Journal of Anatomy, 1984, 170, 483-490.	1.0	21