
Jonathan Visentin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8998246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of the novel <i>HLAâ€DQA1*05:49</i> allele by sequencingâ€based typing. Hla, 2022, 99, 140-141.	0.6	3
2	Characterization of the novel <scp><i>HLAâ€DPB1*665:01:02</i></scp> allele by sequencingâ€based typing. Hla, 2022, 99, 150-152.	0.6	3
3	Characterization of the novel <i>HLAâ€ÐQA1*01:76</i> allele by sequencingâ€based typing. Hla, 2022, 99, 136-137.	0.6	3
4	Characterization of the novel <i><scp>HLAâ€B</scp>*57:146</i> allele by sequencingâ€based typing. Hla, 2022, 99, 389-390.	0.6	3
5	Incidence of cytomegalovirus infection in seropositive kidney transplant recipients treated with everolimus: A randomized, open-label, multicenter phase 4 trial. American Journal of Transplantation, 2022, 22, 1430-1441.	4.7	5
6	Characterization of the novel <i><scp>HLAâ€A</scp>*03:436</i> allele by sequencingâ€based typing. Hla, 2022, 99, 621-623.	0.6	3
7	Characterization of the novel <i><scp>HLAâ€A</scp>*24:564</i> allele by sequencingâ€based typing. Hla, 2022, 99, 623-625.	0.6	3
8	lgG3 donor–specific antibodies with a proinflammatory glycosylation profile may be associated with the risk of antibody-mediated rejection after kidney transplantation. American Journal of Transplantation, 2022, 22, 865-875.	4.7	6
9	Characterization of the novel <i><scp>HLAâ€B</scp>*44:<scp>544N</scp></i> allele by sequencingâ€based typing. Hla, 2022, 99, 631-633.	0.6	3
10	Characterization of the novel <i>HLA *12:354</i> allele by sequencingâ€based typing. Hla, 2022, 100, 88-90.	0.6	3
11	Characterization of the novel <i>HLAâ€ÐQB1*02:197</i> allele by sequencingâ€based typing. Hla, 2022, 100, 184-186.	0.6	3
12	Characterization of the novel <i>HLAâ€B*44:03:62</i> allele by sequencingâ€based typing. Hla, 2022, 100, 158-160.	0.6	3
13	Characterization of the novel <scp><i>HLAâ€A*30:02:28</i></scp> allele by sequencingâ€based typing. Hla, 2022, 99, 377-378.	0.6	3
14	Characterization of the novel <i><scp>HLAâ€DRB4</scp>*01:151</i> allele by sequencingâ€based typing. Hla, 2022, 99, 64-66.	0.6	3
15	Characterization of the novel <i><scp>HLAâ€DPA1</scp>*01:03:40</i> allele by sequencingâ€based typing. Hla, 2022, 100, 403-404.	0.6	3
16	Characterization of the novel <scp><i>HLAâ€DPA1*01:42</i></scp> allele by sequencingâ€based typing. Hla, 2021, 97, 93-94.	0.6	3
17	Clinical relevance of donorâ€specific antibodies directed at <scp>HLA </scp> : A long road to acceptance. Hla, 2021, 97, 3-14.	0.6	7
18	Efficacy of plasmapheresis and semiâ€selective immunoadsorption for removal of antiâ€HLA antibodies. Journal of Clinical Apheresis, 2021, 36, 291-298.	1.3	3

#	Article	IF	CITATIONS
19	Characterization of the novel <i><scp>HLAâ€DQB1</scp>*06:371</i> allele by sequencingâ€based typing. Hla, 2021, 97, 175-176.	0.6	3
20	Characterization of the novel <scp><i>HLAâ€A*02:944</i></scp> allele by sequencingâ€based typing. Hla, 2021, 97, 216-217.	0.6	3
21	The incidence of postâ€transplant malignancies in kidney transplant recipients treated with Rituximab. Clinical Transplantation, 2021, 35, e14171.	1.6	3
22	Characterization of the novel HLAâ€A*02:939 allele by sequencingâ€based typing. Hla, 2021, 97, 436-437.	0.6	3
23	Characterization of the novel <i><scp>HLAâ€DQB1</scp>*06:374</i> allele by sequencingâ€based typing. Hla, 2021, 97, 382-383.	0.6	3
24	Characterization of the novel <i><scp>HLAâ€DRB3</scp>*03:49</i> allele by sequencingâ€based typing. Hla, 2021, 97, 477-478.	0.6	3
25	Characterization of the novel HLAâ€DPB1*1151:01 allele by sequencingâ€based typing. Hla, 2021, 97, 470-471.	0.6	3
26	Characterization of the novel <i><scp>HLAâ€DPA1</scp>*01:44</i> allele by sequencingâ€based typing. Hla, 2021, 97, 466-468.	0.6	3
27	Characterization of the novel <i> <scp>HLAâ€B</scp>*56:76</i> allele by sequencingâ€based typing. Hla, 2021, 98, 66-67.	0.6	3
28	Characterization of the novel <i><scp>HLAâ€A</scp>*26:01:66</i> allele by sequencingâ€based typing. Hla, 2021, 97, 532-533.	0.6	3
29	Characterization of the novel <i> <scp>HLA </scp>*06:314</i> allele by sequencingâ€based typing. Hla, 2021, 98, 70-71.	0.6	3
30	Characterization of the novel <i><scp>HLAâ€A</scp>*36:12</i> allele by sequencingâ€based typing. Hla, 2021, 98, 51-53.	0.6	3
31	Characterization of the novel HLAâ€ÐQA1*03:20 allele by sequencingâ€based typing. Hla, 2021, 98, 492-494.	0.6	3
32	Characterization of the novel HLAâ€DRB1*11:282 allele by sequencingâ€based typing. Hla, 2021, 98, 182-184.	0.6	3
33	Characterization of the novel <i> <scp>HLAâ€DPA1</scp>*01:57</i> allele by sequencingâ€based typing. Hla, 2021, 98, 83-84.	0.6	3
34	Characterization of the novel <i><scp>HLAâ€DQB1</scp>*06:385</i> allele by sequencingâ€based typing. Hla, 2021, 98, 573-574.	0.6	3
35	Characterization of the novel <i> <scp>HLAâ€A</scp>*01:367</i> allele by sequencingâ€based typing. Hla, 2021, 98, 43-44.	0.6	3
36	Characterization of the novel <i>HLAâ€DQA1*01:58</i> allele by sequencingâ€based typing. Hla, 2021, 98, 76-77.	0.6	3

#	Article	IF	CITATIONS
37	Identification of the novel <i><scp>HLAâ€DQB1</scp>*05:275</i> allele by nextâ€generation sequencing. Hla, 2021, 98, 571-572.	0.6	3
38	Characterization of the novel <i><scp>HLAâ€B</scp>*14:01:13</i> allele by sequencingâ€based typing. Hla, 2021, 98, 155-156.	0.6	3
39	Characterization of the novel <i><scp>HLAâ€DPA1</scp>*01:61</i> allele by sequencingâ€based typing. Hla, 2021, 98, 577-578.	0.6	3
40	Characterization of the novel <i><scp>HLAâ€DPA1</scp>*01:60</i> allele by sequencingâ€based typing. Hla, 2021, 98, 575-576.	0.6	3
41	Characterization of the novel <i><scp>HLA </scp>*04:451</i> allele by sequencingâ€based typing. Hla, 2021, 98, 483-485.	0.6	3
42	Characterization of the novel HLAâ€B*44:02:73 allele by sequencingâ€based typing. Hla, 2021, 98, 474-476.	0.6	3
43	Characterization of the novel <i>HLAâ€DQA1*01:02:11</i> allele by sequencingâ€based typing. Hla, 2021, 98, 566-568.	0.6	3
44	Characterization of the novel <i><scp>HLA </scp>*07:01:101</i> allele by sequencingâ€based typing. Hla, 2021, 98, 556-557.	0.6	3
45	Characterization of the novel <scp><i>HLA </i></scp> * <i>01:214</i> allele by sequencingâ€based typing. Hla, 2021, 98, 481-483.	0.6	3
46	Characterization of the novel <scp><i>HLA </i></scp> * <i>15:241</i> allele by sequencingâ€based typing. Hla, 2021, 98, 397-399.	0.6	3
47	Characterization of the novel <i><scp>HLAâ€A</scp>*24:538</i> allele by sequencingâ€based typing. Hla, 2021, 98, 473-474.	0.6	3
48	Characterization of the novel <i>HLAâ€A*11:376</i> allele by sequencingâ€based typing. Hla, 2021, 97, 447-448.	0.6	3
49	Characterization of the novel <i><scp>HLA </scp>*16:173</i> allele by sequencingâ€based typing. Hla, 2021, 97, 82-83.	0.6	3
50	Characterization of the novel <i>HLAâ€DRB3*03:37</i> allele by sequencingâ€based typing. Hla, 2020, 95, 152-153.	0.6	2
51	Evaluation of the AllType kit for HLA typing using the Ion Torrent S5 XL platform. Hla, 2020, 95, 30-39.	0.6	134
52	Characterization of the novel <i>HLAâ€ÐPA1*01:03:16</i> allele by sequencingâ€based typing. Hla, 2020, 95, 158-159.	0.6	2
53	Characterization of the novel <i>HLAâ€DRB1*15:178</i> allele by sequencingâ€based typing. Hla, 2020, 95, 149-150.	0.6	2
54	Characterization of the novel <i>HLAâ€DPB1*04:01:42</i> allele by sequencingâ€based typing. Hla, 2020, 95, 161-163.	0.6	2

#	Article	IF	CITATIONS
55	Characterization of the novel <i>HLAâ€DRB1*12:82</i> allele by sequencingâ€based typing. Hla, 2020, 95, 147-148.	0.6	2
56	Characterization of the novel <i>HLAâ€DRB3*02:02:23</i> allele by sequencingâ€based typing. Hla, 2020, 95, 150-151.	0.6	2
57	Reassessment of the clinical impact of preformed donor-specific anti-HLA-Cw antibodies in kidney transplantation. American Journal of Transplantation, 2020, 20, 1365-1374.	4.7	20
58	Characterization of the novel <i>HLAâ€DPA1*02:26</i> allele by sequencingâ€based typing. Hla, 2020, 95, 160-161.	0.6	2
59	Characterization of the novel HLAâ€A*26:199 allele by sequencingâ€based typing. Hla, 2020, 96, 499-500.	0.6	6
60	Characterization of the novel <scp><i>HLAâ€DQB1*02:141</i></scp> allele by sequencingâ€based typing. Hla, 2020, 96, 369-370.	0.6	6
61	Characterization of the novel HLAâ€DQA1*01:48 allele by sequencingâ€based typing. Hla, 2020, 96, 362-364.	0.6	6
62	Characterization of the novel <scp><i>HLA *03:517</i></scp> allele by sequencingâ€based typing. Hla, 2020, 96, 527-528.	0.6	6
63	Characterization of the novel HLAâ€DRB3*01:86 allele by sequencingâ€based typing. Hla, 2020, 96, 535-537.	0.6	6
64	Characterization of the novel <i><scp>HLAâ€B</scp>*53:62</i> allele by sequencingâ€based typing. Hla, 2020, 96, 640-642.	0.6	3
65	Characterization of the novel <i><scp>HLAâ€DQB1</scp>*04:78</i> allele by sequencingâ€based typing. Hla, 2020, 96, 547-549.	0.6	6
66	Characterization of the novel <scp><i>HLAâ€DPB1*1089:01</i></scp> allele by sequencingâ€based typing. Hla, 2020, 96, 247-248.	0.6	6
67	Characterization of the novel <scp><i>HLAâ€DQA1*03:15</i></scp> allele by sequencingâ€based typing. Hla, 2020, 96, 236-237.	0.6	6
68	Characterization of the novel <scp><i>HLAâ€DRB3*02:02:25</i></scp> allele by sequencingâ€based typing. Hla, 2020, 96, 359-360.	0.6	6
69	Improvement in HLA typing by a new sequenceâ€specific oligonucleotides kit. Hla, 2020, 96, 323-328.	0.6	11
70	Characterization of the novel <scp><i>HLAâ€DQA1*03:01:06</i></scp> allele by sequencingâ€based typing. Hla, 2020, 96, 234-235.	0.6	6
71	Characterization of the novel <scp><i>HLAâ€DPB1*1098:01N</i></scp> allele by sequencingâ€based typing. Hla, 2020, 96, 249-251.	0.6	6
72	Characterization of the novel <scp><i>HLAâ€A*11:361</i></scp> allele by sequencingâ€based typing. Hla, 2020, 96, 497-498.	0.6	6

#	Article	IF	CITATIONS
73	Characterization of the novel <scp><i>HLAâ€B*18:161</i></scp> allele by sequencingâ€based typing. Hla, 2020, 96, 513-514.	0.6	7
74	Characterization of the novel <scp><i>HLAâ€DQA1*01:49</i></scp> allele by sequencingâ€based typing. Hla, 2020, 96, 233-234.	0.6	6
75	Characterization of the novel <scp><i>HLAâ€B*27:198</i></scp> allele by sequencingâ€based typing. Hla, 2020, 96, 515-516.	0.6	6
76	Monoclonal secondary reagents do not outperform polyclonal secondary reagents for detection of antiâ€HLA IgG using single antigen flow beads assays. Hla, 2020, 96, 456-467.	0.6	1
77	Characterization of the novel HLAâ€DRB1*04:275 allele by sequencingâ€based typing. Hla, 2020, 96, 356-357.	0.6	6
78	Distribution of de novo Donor-Specific Antibody Subclasses Quantified by Mass Spectrometry: High IgG3 Proportion Is Associated With Antibody-Mediated Rejection Occurrence and Severity. Frontiers in Immunology, 2020, 11, 919.	4.8	13
79	Characterization of the novel <i>HLAâ€DPA1*01:03:19</i> allele by sequencingâ€based typing. Hla, 2020, 96, 129-130.	0.6	2
80	Characterization of the novel <scp><i>HLAâ€DRB3*02:142</i></scp> allele by sequencingâ€based typing. Hla, 2020, 95, 581-582.	0.6	2
81	Characterization of the novel <scp><i>HLAâ€B*44:192:04</i></scp> allele by sequencingâ€based typing. Hla, 2020, 95, 573-574.	0.6	2
82	Characterization of the novel HLAâ€DQA1*05:23 allele by sequencingâ€based typing. Hla, 2020, 96, 120-121.	0.6	2
83	Characterization of the novel HLAâ€DQB1*06:361 allele by sequencingâ€based typing. Hla, 2020, 96, 125-127.	0.6	2
84	Characterization of the novel <scp><i>HLAâ€DQA1*05:05:05</i></scp> allele by sequencingâ€based typing. Hla, 2020, 96, 372-373.	0.6	6
85	Characterization of the novel <scp><i>HLAâ€DQB1*03:01:46</i></scp> allele by sequencingâ€based typing. Hla, 2020, 96, 544-545.	0.6	6
86	Characterization of the novel <i>HLAâ€B*27:13:02</i> allele by sequencingâ€based typing. Hla, 2020, 96, 92-93.	0.6	2
87	Donor-targeted serotherapy as a rescue therapy for steroid-resistant acute GVHD after HLA-mismatched kidney transplantation. American Journal of Transplantation, 2020, 20, 2243-2253.	4.7	11
88	Characterization of the novel <i>HLA *04:408</i> allele by sequencingâ€based typing. Hla, 2020, 96, 101-102.	0.6	2
89	Characterization of the novel <scp><i>HLAâ€DQA1*04:08</i></scp> allele by sequencingâ€based typing. Hla, 2020, 95, 584-585.	0.6	2
90	Characterization of the novel <i>HLAâ€DRB3*02:96</i> allele by sequencingâ€based typing. Hla, 2019, 94, 464-465.	0.6	2

#	Article	IF	CITATIONS
91	Characterization of the novel <i>HLAâ€DPA1*01:20</i> allele by sequencingâ€based typing. Hla, 2019, 94, 396-397.	0.6	2
92	Characterization of the novel HLA *07:724 allele by sequencingâ€based typing. Hla, 2019, 94, 77-78.	0.6	4
93	Characterization of the novel <i>HLAâ€DQA1*01:22</i> allele by sequencingâ€based typing. Hla, 2019, 94, 333-334.	0.6	2
94	Characterization of the novel HLAâ€DQB1*03:353 allele by sequencingâ€based typing. Hla, 2019, 94, 86-87.	0.6	4
95	Characterization of the novel <i>HLAâ€DQA1*01:01:05</i> allele by sequencingâ€based typing. Hla, 2019, 94, 172-173.	0.6	3
96	Characterization of the novel <i>HLAâ€DPA1*02:15</i> allele by sequencingâ€based typing. Hla, 2019, 94, 179-180.	0.6	2
97	Characterization of the novel <i>HLAâ€ÐQA1*01:27</i> allele by sequencingâ€based typing. Hla, 2019, 94, 392-393.	0.6	2
98	Characterization of the novel HLA-C*03:302 allele by sequencing-based typing. Hla, 2019, 93, 51-52.	0.6	2
99	Characterization of the novel <i>HLAâ€ÐQA1*01:25</i> allele by sequencingâ€based typing. Hla, 2019, 94, 174-175.	0.6	2
100	Characterization of the novel <i>HLAâ€DRB3*02:02:17</i> allele by sequencingâ€based typing. Hla, 2019, 94, 170-171.	0.6	2
101	Characterization of the novel <i>HLAâ€DQB1*03:02:01:08</i> allele by sequencingâ€based typing. Hla, 2019, 94, 335-336.	0.6	2
102	Characterization of the novel HLAâ€A*03:350 allele by sequencingâ€based typing. Hla, 2019, 94, 154-155.	0.6	2
103	Characterization of the novel <i>HLAâ€DRB1*01:100</i> allele by sequencingâ€based typing. Hla, 2019, 94, 166-167.	0.6	2
104	Characterization of the novel <i>HLAâ€A*11:324</i> allele by sequencingâ€based typing. Hla, 2019, 94, 155-156.	0.6	2
105	Characterization of the novel HLA-DPA1*02:12 allele by sequencing-based typing. Hla, 2019, 93, 61-62.	0.6	4
106	Provir/Latitude 45 study: A step towards a multi-epitopic CTL vaccine designed on archived HIV-1 DNA and according to dominant HLA I alleles. PLoS ONE, 2019, 14, e0212347.	2.5	4
107	Characterization of the novel <i>HLAâ€DRB3*03:01:07</i> allele by sequencingâ€based typing. Hla, 2019, 93, 240-241.	0.6	2
108	Characterization of the novel HLA *07:708 allele by sequencingâ€based typing. Hla, 2019, 93, 235-236.	0.6	2

#	Article	IF	CITATIONS
109	Characterization of the novel <i>HLAâ€DQA1*05:14</i> allele by sequencingâ€based typing. Hla, 2019, 93, 241-243.	0.6	2
110	Characterization of the novel <i>HLAâ€DPB1*896:01</i> allele by sequencingâ€based typing. Hla, 2019, 93, 246-247.	0.6	2
111	Characterization of the novel HLAâ€DRB1*14:207 allele by sequencingâ€based typing. Hla, 2019, 94, 85-86.	0.6	4
112	Characterization of the novel HLAâ€B*07:02:73 allele by sequencingâ€based typing. Hla, 2019, 94, 65-66.	0.6	4
113	Measuring anti-HLA antibody active concentration and affinity by surface plasmon resonance: Comparison with the luminex single antigen flow beads and T-cell flow cytometry crossmatch results. Molecular Immunology, 2019, 108, 34-44.	2.2	12
114	Characterization of the novel HLAâ€A*33:170 allele by sequencingâ€based typing. Hla, 2019, 93, 221-223.	0.6	2
115	Characterization of the novel HLA-DRB5*02:21 allele by sequencing-based typing. Hla, 2019, 93, 58-59.	0.6	3
116	Characterization of the novel HLA-DRB1*03:147 allele by sequencing-based typing. Hla, 2019, 93, 53-54.	0.6	6
117	Characterization of the novel <i>HLAâ€A*30:135</i> allele by sequencingâ€based typing. Hla, 2019, 93, 46-47.	0.6	3
118	Characterization of the novel HLA-A*03:315 allele by sequencing-based typing. Hla, 2019, 93, 39-40.	0.6	3
119	Characterization of the novel <i>HLA *16:116</i> allele by sequencingâ€based typing. Hla, 2018, 91, 309-311	. 0.6	3
120	The disappointing contribution of anti-human leukocyte antigen donor-specific antibodies characteristics for predicting allograft loss. Nephrology Dialysis Transplantation, 2018, 33, 1853-1863.	0.7	30
121	Prevalence, distribution and amplitude of the complement interference phenomenon in single antigen flow beads assays. Hla, 2018, 91, 507-513.	0.6	19
122	Characterization of the novel HLAâ€B*07:305 allele by sequencingâ€based typing. Hla, 2018, 91, 296-297.	0.6	3
123	Characterization of the novel HLAâ€A*24:391 allele by sequencingâ€based typing. Hla, 2018, 91, 292-293.	0.6	3
124	Predicted indirectly recognizable HLA epitopes (PIRCHE): Only the tip of the iceberg?. American Journal of Transplantation, 2018, 18, 521-522.	4.7	6
125	Comments on "Direct quantitative measurement of the kinetics of HLA-specific antibody interactions with isolated HLA proteins― Human Immunology, 2018, 79, 129.	2.4	1
126	Characterization of the novel <i>HLAâ€DPB1*763:01</i> allele by sequencingâ€based typing. Hla, 2018, 92, 429-431.	0.6	5

#	Article	IF	CITATIONS
127	Characterization of the novel HLAâ€DRB1*13:191 allele by sequencingâ€based typing. Hla, 2018, 93, 55-56.	0.6	1
128	Characterization of the novel HLAâ€ÐQA1*04:05 allele by sequencingâ€based typing. Hla, 2018, 93, 59-60.	0.6	4
129	Characterization of the novel <i>HLAâ€B*15:476</i> allele by sequencingâ€based typing. Hla, 2018, 92, 412-413.	0.6	3
130	Characterization of the novel <i>HLA *07:639</i> allele by sequencingâ€based typing. Hla, 2018, 92, 422-423.	0.6	4
131	Improvement in HLAâ€typing by new sequenceâ€specific oligonucleotides kits for HLAâ€A, â€B, and â€DRB1 loci. Hla, 2018, 92, 279-287.	0.6	78
132	Overcoming non-specific binding to measure the active concentration and kinetics of serum anti-HLA antibodies by surface plasmon resonance. Biosensors and Bioelectronics, 2018, 117, 191-200.	10.1	19
133	Reassessment of T Lymphocytes Crossmatches Results Prediction With Luminex Class I Single Antigen Flow Beads Assay. Transplantation, 2017, 101, 624-630.	1.0	26
134	Anti-HLA donor-specific antibodies are not created equally. Don't forget the flow…. Transplant International, 2016, 29, 508-510.	1.6	10
135	Deleterious Impact of Donor-Specific Anti-HLA Antibodies Toward HLA-Cw and HLA-DP in Kidney Transplantation. Transplantation, 2016, 100, 159-166.	1.0	59
136	Lung intragraft donor-specific antibodies as a risk factor for graft loss. Journal of Heart and Lung Transplantation, 2016, 35, 1418-1426.	0.6	37
137	Non-Complement–Binding De Novo Donor-Specific Anti-HLA Antibodies and Kidney Allograft Survival. Journal of the American Society of Nephrology: JASN, 2016, 27, 615-625.	6.1	116
138	Use of Single-Antigen Flow Beads Assays to Assess Anti-HLA Donor-Specific Antibody Strength. Biology of Blood and Marrow Transplantation, 2016, 22, 394-395.	2.0	4
139	Deciphering IgM interference in IgG anti-HLA antibody detection with flow beads assays. Human Immunology, 2016, 77, 1048-1054.	2.4	23
140	Calibration free concentration analysis by surface plasmon resonance in a capture mode. Talanta, 2016, 148, 478-485.	5.5	20
141	Deciphering allogeneic antibody response against native and denatured HLA epitopes in organ transplantation. European Journal of Immunology, 2015, 45, 2111-2121.	2.9	40
142	Clinical impact of preformed donorâ€specific denatured class I <scp>HLA</scp> antibodies after kidney transplantation. Clinical Transplantation, 2015, 29, 393-402.	1.6	35
143	Evaluation of the iBeads assay as a tool for identifying class I HLA antibodies. Human Immunology, 2015, 76, 651-656.	2.4	19
144	Evolution of serum and intra-graft donor-specific anti-HLA antibodies in a patient with two consecutive liver transplantations. Transplant Immunology, 2015, 33, 58-62.	1.2	12

#	Article	IF	CITATIONS
145	Detection of C3d-Binding Donor-Specific Anti-HLA Antibodies at Diagnosis of Humoral Rejection Predicts Renal Graft Loss. Journal of the American Society of Nephrology: JASN, 2015, 26, 457-467.	6.1	226
146	Deciphering Complement Interference in Anti–Human Leukocyte Antigen Antibody Detection With Flow Beads Assays. Transplantation, 2014, 98, 625-631.	1.0	86
147	Denatured Class I Human Leukocyte Antigen Antibodies in Sensitized Kidney Recipients. Transplantation, 2014, 98, 738-744.	1.0	70
148	Characterization of the novel <i>HLA</i> ― <i>DQA1</i> * <i>05</i> : <i>53</i> allele by sequencingâ€based typing. Hla, 0, , .	0.6	3
149	Characterization of the novel <i>HLA</i> ― <i>DPB1</i> * <i>O2</i> : <i>O1</i> : <i>63</i> allele by sequencingâ€based typing. Hla, 0, , .	0.6	3
150	Characterization of the novel <i>HLA</i> ― <i>DQB1</i> * <i>O2</i> : <i>200</i> allele by sequencingâ€based typing. Hla, 0, , .	0.6	3