Karina S Cramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8997102/publications.pdf

Version: 2024-02-01

59	1,752	27	40
papers	citations	h-index	g-index
59	59	59	1181 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Synapse Maturation and Developmental Impairment in the Medial Nucleus of the Trapezoid Body. Frontiers in Integrative Neuroscience, 2022, 16, 804221.	2.1	O
2	Non-Apoptotic Caspase Activity Preferentially Targets a Novel Consensus Sequence Associated With Cytoskeletal Proteins in the Developing Auditory Brainstem. Frontiers in Cell and Developmental Biology, 2022, 10, 844844.	3.7	0
3	Auditory Brainstem Deficits from Early Treatment with a CSF1R Inhibitor Largely Recover with Microglial Repopulation. ENeuro, 2021, 8, ENEURO.0318-20.2021.	1.9	7
4	<i>CX3CR1</i> mutation alters synaptic and astrocytic protein expression, topographic gradients, and response latencies in the auditory brainstem. Journal of Comparative Neurology, 2021, 529, 3076-3097.	1.6	7
5	Caspase-3 Cleaves Extracellular Vesicle Proteins During Auditory Brainstem Development. Frontiers in Cellular Neuroscience, 2020, 14, 573345.	3.7	11
6	Mechanisms underlying auditory processing deficits in Fragile X syndrome. FASEB Journal, 2020, 34, 3501-3518.	0.5	41
7	Development of the Ascending Auditory Pathway. , 2020, , 337-353.		1
8	Microglia Regulate Pruning of Specialized Synapses in the Auditory Brainstem. Frontiers in Neural Circuits, 2019, 13, 55.	2.8	38
9	The evolution of hearing and balance. ELife, 2019, 8, .	6.0	2
10	Auditory System Development: A Tribute to Edwin W Rubel. Springer Handbook of Auditory Research, 2017, , 1-15.	0.7	0
11	Developmental Emergence of Phenotypes in the Auditory Brainstem Nuclei of <i>Fmr1 </i> Knockout Mice. ENeuro, 2017, 4, ENEURO.0264-17.2017.	1.9	28
12	Glial Cell Contributions to Auditory Brainstem Development. Frontiers in Neural Circuits, 2016, 10, 83.	2.8	11
13	Axonal Cleaved Caspase-3 Regulates Axon Targeting and Morphogenesis in the Developing Auditory Brainstem. Frontiers in Neural Circuits, 2016, 10, 84.	2.8	19
14	Eph-ephrin signaling in nervous system development. F1000Research, 2016, 5, 413.	1.6	55
15	Ephrin-A2 and ephrin-A5 guide contralateral targeting but not topographic mapping of ventral cochlear nucleus axons. Neural Development, 2015, 10, 27.	2.4	11
16	Deletion of Fmr1 Alters Function and Synaptic Inputs in the Auditory Brainstem. PLoS ONE, 2015, 10, e0117266.	2.5	55
17	Distribution of glial cells in the auditory brainstem: Normal development and effects of unilateral		0.7
	lesion. Neuroscience, 2014, 278, 237-252.	2.3	27

#	Article	IF	CITATIONS
19	EphB2 signaling regulates lesion-induced axon sprouting but not critical period length in the postnatal auditory brainstem. Neural Development, 2013, 8, 2.	2.4	5
20	Selective Tracing of Auditory Fibers in the Avian Embryonic Vestibulocochlear Nerve. Journal of Visualized Experiments, 2013, , e50305.	0.3	3
21	Differential Roles for EphA and EphB Signaling in Segregation and Patterning of Central Vestibulocochlear Nerve Projections. PLoS ONE, 2013, 8, e78658.	2.5	7
22	Coordinated Eph-ephrin signaling guides migration and axon targeting in the avian auditory system. Neural Development, 2012, 7, 29.	2.4	14
23	EphB signaling regulates target innervation in the developing and deafferented auditory brainstem. Developmental Neurobiology, 2012, 72, 1243-1255.	3.0	14
24	Astrocyteâ€secreted factors modulate the developmental distribution of inhibitory synapses in nucleus laminaris of the avian auditory brainstem. Journal of Comparative Neurology, 2012, 520, 1262-1277.	1.6	15
25	Formation and maturation of the calyx of Held. Hearing Research, 2011, 276, 70-78.	2.0	35
26	Null Mutations in EphB Receptors Decrease Sharpness of Frequency Tuning in Primary Auditory Cortex. PLoS ONE, 2011, 6, e26192.	2.5	9
27	Astrocyte-Secreted Factors Modulate a Gradient of Primary Dendritic Arbors in Nucleus Laminaris of the Avian Auditory Brainstem. PLoS ONE, 2011, 6, e27383.	2.5	10
28	Ephrin-B Reverse Signaling Is Required for Formation of Strictly Contralateral Auditory Brainstem Pathways. Journal of Neuroscience, 2010, 30, 9840-9849.	3.6	34
29	Distribution of glialâ€associated proteins in the developing chick auditory brainstem. Developmental Neurobiology, 2008, 68, 1093-1106.	3.0	16
30	Auditory brainstem responses are impaired in EphA4 and ephrin-B2 deficient mice. Hearing Research, 2008, 235, 39-46.	2.0	24
31	Windowing Chicken Eggs for Developmental Studies. Journal of Visualized Experiments, 2007, , 306.	0.3	29
32	Placing Growth Factor-Coated Beads on Early Stage Chicken Embryos. Journal of Visualized Experiments, 2007, , 307.	0.3	2
33	EphA4 misexpression alters tonotopic projections in the auditory brainstem. Developmental Neurobiology, 2007, 67, 1655-1668.	3.0	43
34	Deletion of EphA4 enhances deafferentationâ€induced ipsilateral sprouting in auditory brainstem projections. Journal of Comparative Neurology, 2007, 504, 508-518.	1.6	22
35	Auditory brainstem neural activation patterns are altered in EphA4―and ephrinâ€B2â€deficient mice. Journal of Comparative Neurology, 2007, 505, 669-681.	1.6	36
36	EphB2 regulates axonal growth at the midline in the developing auditory brainstem. Developmental Biology, 2006, 295, 76-89.	2.0	27

#	Article	IF	CITATIONS
37	Deafferentation induces novel axonal projections in the auditory brainstem after hearing onset. Journal of Comparative Neurology, 2006, 497, 589-599.	1.6	24
38	Avian superior olivary nucleus provides divergent inhibitory input to parallel auditory pathways. Journal of Comparative Neurology, 2005, 481, 6-18.	1.6	100
39	Differential expression of Eph receptors and ephrins in the cochlear ganglion and eighth cranial nerve of the chick embryo. Journal of Comparative Neurology, 2005, 482, 309-319.	1.6	29
40	Eph proteins and the assembly of auditory circuits. Hearing Research, 2005, 206, 42-51.	2.0	53
41	Ephrin-A5 Exerts Positive or Inhibitory Effects on Distinct Subsets of EphA4-Positive Motor Neurons. Journal of Neuroscience, 2004, 24, 1070-1078.	3.6	92
42	Tonotopic gradients of Eph family proteins in the chick nucleus laminaris during synaptogenesis. Journal of Neurobiology, 2004, 60, 28-39.	3.6	46
43	EphA4 signaling promotes axon segregation in the developing auditory system. Developmental Biology, 2004, 269, 26-35.	2.0	46
44	Choosing axonal real estate: Location, location, location. Journal of Comparative Neurology, 2002, 448, 1-5.	1.6	24
45	Expression of EphB receptors and EphrinB ligands in the developing chick auditory brainstem. Journal of Comparative Neurology, 2002, 452, 51-64.	1.6	44
46	Developmental regulation of ephA4 expression in the chick auditory brainstem. Journal of Comparative Neurology, 2000, 426, 270-278.	1.6	44
47	Embryonic Origins of Auditory Brain-Stem Nuclei in the Chick Hindbrain. Developmental Biology, 2000, 224, 138-151.	2.0	78
48	The neuronal form of nitric oxide synthase is required for pattern formation by retinal afferents in the ferret lateral geniculate nucleus. Developmental Brain Research, 1999, 116, 79-86.	1.7	47
49	Pattern formation by retinal afferents in the ferret lateral geniculate nucleus: Developmental segregation and the role of N-methyl-D-aspartate receptors. Journal of Comparative Neurology, 1999, 411, 327-345.	1.6	49
50	Chapter 8 Nitric oxide as a signaling molecule in visual system development. Progress in Brain Research, 1998, 118, 101-114.	1.4	37
51	The Role of Activity-Dependent Mechanisms in Pattern Formation in the Retinogeniculate Pathway. , 1998, , 309-318.		1
52	Experimentally Induced Retinal Projections to the Ferret Auditory Thalamus: Development of Clustered Eye-Specific Patterns in a Novel Target. Journal of Neuroscience, 1997, 17, 2040-2055.	3.6	43
53	Blockade of afferent impulse activity disrupts on/off sublamination in the ferret lateral geniculate nucleus. Developmental Brain Research, 1997, 98, 287-290.	1.7	66
54	A Role for Nitric Oxide in the Development of the Ferret Retinogeniculate Projection. Journal of Neuroscience, 1996, 16, 7995-8004.	3.6	130

#	Article	IF	CITATIONS
55	Chapter 16 The role of NMDA receptors and nitric oxide in retinogeniculate development. Progress in Brain Research, 1996, 108, 235-244.	1.4	20
56	Lack of topography in the spinal cord projection of the rabbit soleus muscle. Journal of Comparative Neurology, 1995, 351, 404-414.	1.6	3
57	Transient expression of NADPH-diaphorase in the lateral geniculate nucleus of the ferret during early postnatal development. Journal of Comparative Neurology, 1995, 353, 306-316.	1.6	64
58	Maturation of Fast and Slow Motor Units during Synapse Elimination in the Rabbit Soleus Muscle. Developmental Biology, 1995, 171, 16-26.	2.0	10
59	Glial Cells in the Auditory Brainstem. , 0, , 681-706.		0