
Jana Sawynok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8996785/publications.pdf

Version: 2024-02-01

IANA SAWANOK

#	Article	IF	CITATIONS
1	Observational Study of Qigong as a Complementary Self-Care Practice at a Tertiary-Care Pain Management Unit. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-14.	1.2	1
2	History of the Pharmacological Society of Canada 1956–2008. Canadian Journal of Physiology and Pharmacology, 2020, 98, 343-350.	1.4	0
3	Case Series of Multiple Health Benefits in Those Undertaking Extended Qigong Practice as a Complementary Self-care Practice in an Outpatient Pain Clinic. OBM Integrative and Complementary Medicine, 2019, 4, 1-1.	0.2	1
4	Benefits of Tai Chi for fibromyalgia. Pain Management, 2018, 8, 247-250.	1.5	2
5	Qigong and Fibromyalgia circa 2017. Medicines (Basel, Switzerland), 2017, 4, 37.	1.4	12
6	Topical amitriptyline and ketamine for post-herpetic neuralgia and other forms of neuropathic pain. Expert Opinion on Pharmacotherapy, 2016, 17, 601-609.	1.8	21
7	Adenosine A1 Receptor-Dependent Antinociception Induced by Inosine in Mice: Pharmacological, Genetic and Biochemical Aspects. Molecular Neurobiology, 2015, 51, 1368-1378.	4.0	33
8	Topical and Peripheral Ketamine as an Analgesic. Anesthesia and Analgesia, 2014, 119, 170-178.	2.2	55
9	Qigong and Fibromyalgia: Randomized Controlled Trials and Beyond. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-14.	1.2	24
10	Qualitative Analysis of a Controlled Trial of Qigong for Fibromyalgia: Advancing Understanding of an Emerging Health Practice. Journal of Alternative and Complementary Medicine, 2014, 20, 606-617.	2.1	8
11	Topical Analgesics for Neuropathic Pain in the Elderly: Current and Future Prospects. Drugs and Aging, 2014, 31, 853-862.	2.7	16
12	Contributions of peripheral, spinal, and supraspinal actions to analgesia. European Journal of Pharmacology, 2014, 734, 114-121.	3.5	21
13	Spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors, are involved in antinociception by systemically administered amitriptyline. European Journal of Pharmacology, 2013, 698, 213-219.	3.5	30
14	Spinal and peripheral adenosine A1 receptors contribute to antinociception by tramadol in the formalin test in mice. European Journal of Pharmacology, 2013, 714, 373-378.	3.5	28
15	Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors. Neuroscience Letters, 2013, 536, 64-68.	2.1	31
16	Extension Trial of Qigong for Fibromyalgia: A Quantitative and Qualitative Study. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-12.	1.2	9
17	<i>Chaoyi Fanhuan Qigong</i> and Fibromyalgia: Methodological Issues and Two Case Reports. Journal of Alternative and Complementary Medicine, 2013, 19, 383-386.	2.1	10

2

JANA SAWYNOK

#	Article	IF	CITATIONS
19	A randomized controlled trial of qigong for fibromyalgia. Arthritis Research and Therapy, 2012, 14, R178.	3.5	71
20	Pain Catastrophizing Predicts Poor Response to Topical Analgesics in Patients with Neuropathic Pain. Pain Research and Management, 2012, 17, 10-14.	1.8	54
21	Caffeine inhibits antinociception by acetaminophen in the formalin test by inhibiting spinal adenosine A1 receptors. European Journal of Pharmacology, 2012, 674, 248-254.	3.5	33
22	Reduction of formalin-evoked responses and maintenance of peripheral antinociception by morphine against formalin in the spared nerve injury model. Neuroscience Letters, 2011, 494, 99-103.	2.1	3
23	Caffeine and pain. Pain, 2011, 152, 726-729.	4.2	82
24	Methylxanthines and Pain. Handbook of Experimental Pharmacology, 2011, , 311-329.	1.8	52
25	Caffeine reverses antinociception by oxcarbazepine by inhibition of adenosine A1 receptors: Insights using knockout mice. Neuroscience Letters, 2010, 473, 178-181.	2.1	22
26	A Pilot Trial of CFQ for Treatment of Fibromyalgia. Journal of Alternative and Complementary Medicine, 2009, 15, 1057-1058.	2.1	8
27	Perisurgical amitriptyline produces a preventive effect on afferent hypersensitivity following spared nerve injury. Pain, 2009, 146, 308-314.	4.2	28
28	Catastrophizing and treatment outcome: differential impact on response to placebo and active treatment outcome. Contemporary Hypnosis, 2008, 25, 129-140.	0.7	14
29	Caffeine reverses antinociception by amitriptyline in wild type mice but not in those lacking adenosine A1 receptors. Neuroscience Letters, 2008, 440, 181-184.	2.1	27
30	Adrenergic regulation of P2X3 and TRPV1 receptors: Differential effects of spared nerve injury. Neuroscience Letters, 2008, 444, 172-175.	2.1	8
31	α1-Adrenergic Receptors Augment P2X3 Receptor–Mediated Nociceptive Responses in the Uninjured State. Journal of Pain, 2007, 8, 556-562.	1.4	26
32	Pain Behaviors Produced by Capsaicin: Influence of Inflammatory Mediators and Nerve Injury. Journal of Pain, 2006, 7, 134-141.	1.4	30
33	Tricyclic Antidepressants As Analgesics in the Elderly. , 2006, , 117-132.		0
34	Topical 2% Amitriptyline and 1% Ketamine in Neuropathic Pain Syndromes. Anesthesiology, 2005, 103, 140-146.	2.5	128
35	Amitriptyline enhances extracellular tissue levels of adenosine in the rat hindpaw and inhibits adenosine uptake. European Journal of Pharmacology, 2005, 518, 116-122.	3.5	28
36	Topical Analgesics in Neuropathic Pain. Current Pharmaceutical Design, 2005, 11, 2995-3004.	1.9	56

JANA SAWYNOK

#	Article	IF	CITATIONS
37	Topical Amitriptyline and Ketamine in Neuropathic Pain Syndromes: An Open-Label Study. Journal of Pain, 2005, 6, 644-649.	1.4	106
38	Amitriptyline produces multiple influences on the peripheral enhancement of nociception by P2X receptors. European Journal of Pharmacology, 2004, 499, 275-283.	3.5	2
39	Peripheral P2X receptors and nociception: interactions with biogenic amine systems. Pain, 2004, 110, 79-89.	4.2	25
40	Adenosine in the spinal cord and periphery: release and regulation of pain. Progress in Neurobiology, 2003, 69, 313-340.	5.7	313
41	Chronic intrathecal cannulas inhibit some and potentiate other behaviors elicited by formalin injection. Pain, 2003, 103, 7-9.	4.2	1
42	Peripheral interactions between dextromethorphan, ketamine and amitriptyline on formalin-evoked behaviors and paw edema in rats. Pain, 2003, 102, 179-186.	4.2	35
43	Topical and Peripherally Acting Analgesics. Pharmacological Reviews, 2003, 55, 1-20.	16.0	310
44	Peripheral Antihyperalgesic and Analgesic Actions of Ketamine and Amitriptyline in a Model of Mild Thermal Injury in the Rat. Anesthesia and Analgesia, 2003, 97, 168-173.	2.2	47
45	The Formalin Test: Characteristics and Usefulness of the Model. Reviews in Analgesia, 2003, 7, 145-163.	0.9	59
46	Adenosine $\hat{a} \in$ " A peripheral neuronal modulator of pain and inflammation. , 2003, , 177-199.		0
47	Modulation of formalin-induced behaviors and edema by local and systemic administration of dextromethorphan, memantine and ketamine. European Journal of Pharmacology, 2002, 450, 153-162.	3.5	52
48	Intraplantar injection of glutamate evokes peripheral adenosine release in the rat hind paw: involvement of peripheral ionotropic glutamate receptors and capsaicin-sensitive sensory afferents. Journal of Neurochemistry, 2002, 80, 562-570.	3.9	25
49	Antinociception by tricyclic antidepressants in the rat formalin test: differential effects on different behaviours following systemic and spinal administration. Pain, 2001, 93, 51-59.	4.2	51
50	Chronic administration of amitriptyline and caffeine in a rat model of neuropathic pain: multiple interactions. European Journal of Pharmacology, 2001, 430, 211-218.	3.5	66
51	Involvement of primary sensory afferents, postganglionic sympathetic nerves and mast cells in the formalin-evoked peripheral release of adenosine. European Journal of Pharmacology, 2001, 429, 147-155.	3.5	17
52	Involvement of mast cells, sensory afferents and sympathetic mechanisms in paw oedema induced by adenosine A1 and A2B/3 receptor agonists. European Journal of Pharmacology, 2000, 395, 47-50.	3.5	18
53	Caffeine blockade of the thermal antihyperalgesic effect of acute amitriptyline in a rat model of neuropathic pain. European Journal of Pharmacology, 2000, 399, 131-139.	3.5	73
54	Potentiation of formalin-evoked adenosine release by an adenosine kinase inhibitor and an adenosine deaminase inhibitor in the rat hind paw: a microdialysis study. European Journal of Pharmacology, 2000, 408, 143-152.	3.5	25

JANA SAWYNOK

#	Article	lF	CITATIONS
55	Antinociceptive and anti-inflammatory properties of an adenosine kinase inhibitor and an adenosine deaminase inhibitor. European Journal of Pharmacology, 1999, 384, 123-138.	3.5	45
56	Acute paw oedema induced by local injection of adenosine A1, A2 and A3 receptor agonists. European Journal of Pharmacology, 1999, 386, 253-261.	3.5	18
57	Peripheral antinociceptive action of amitriptyline in the rat formalin test: involvement of adenosine. Pain, 1999, 80, 45-55.	4.2	122
58	Acute amitriptyline in a rat model of neuropathic pain: differential symptom and route effects. Pain, 1999, 80, 643-653.	4.2	148
59	Adenosine and pain: Recent findings with directly and indirectly acting agents. Drug Development Research, 1998, 45, 304-311.	2.9	5
60	Peripheral antinociceptive effect of an adenosine kinase inhibitor, with augmentation by an adenosine deaminase inhibitor, in the rat formalin test. Pain, 1998, 74, 75-81.	4.2	51
61	Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain, 1998, 74, 235-245.	4.2	122
62	Adenosine receptor activation and nociception. European Journal of Pharmacology, 1998, 347, 1-11.	3.5	412
63	Peripheral adenosine 5′-triphosphate enhances nociception in the formalin test via activation of a purinergic p2X receptor. European Journal of Pharmacology, 1997, 330, 115-121.	3.5	82
64	Adenosine A3 receptor activation produces nociceptive behaviour and edema by release of histamine and 5-hydroxytryptamine. European Journal of Pharmacology, 1997, 333, 1-7.	3.5	72
65	Substance P releases and augments the morphine-evoked release of adenosine from spinal cord. Brain Research, 1997, 760, 294-297.	2.2	10
66	Synergy between receptors mediates adenosine release from spinal cord synaptosomes. European Journal of Pharmacology, 1996, 298, 45-49.	3.5	27
67	Caffeine antinociception: role of formalin concentration and adenosine A1 and A2 receptors. European Journal of Pharmacology, 1996, 298, 105-111.	3.5	19
68	Adenosine kinase inhibitors augment release of adenosine from spinal cord slices. European Journal of Pharmacology, 1996, 307, 157-162.	3.5	48
69	Modulation of adenosine release from rat spinal cord by adenosine deaminase and adenosine kinase inhibitors. Brain Research, 1995, 699, 315-320.	2.2	26
70	Interactions of descending serotonergic systems with other neurotransmitters in the modulation of nociception. Behavioural Brain Research, 1995, 73, 63-68.	2.2	61
71	Caffeine antinociception in the rat hot-plate and formalin tests and locomotor stimulation: involvement of noradrenergic mechanisms. Pain, 1995, 61, 203-213.	4.2	47
72	Complex role of peripheral adenosine in the genesis of the response to subcutaneous formalin in the rat. European Journal of Pharmacology, 1995, 281, 311-318.	3.5	64

Jana Sawynok

#	Article	IF	CITATIONS
73	Antinociception by adenosine analogs and an adenosine kinase inhibitor: dependence on formalin concentration. European Journal of Pharmacology, 1995, 286, 177-184.	3.5	69
74	Pharmacological Rationale for the Clinical Use of Caffeine. Drugs, 1995, 49, 37-50.	10.9	128
75	Involvement of Calcium Channels in Depolarization-Evoked Release of Adenosine from Spinal Cord Synaptosomes. Journal of Neurochemistry, 1993, 60, 886-893.	3.9	21
76	Morphine-evoked release of adenosine from the spinal cord occurs via a nucleoside carrier with differential sensitivity to dipyridamole and nitrobenzylthioinosine. Brain Research, 1993, 614, 301-307.	2.2	21
77	ATP release from dorsal spinal cord synaptosomes: characterization and neuronal origin. Brain Research, 1993, 610, 32-38.	2.2	85
78	Desipramine potentiates spinal antinociception by 5-hydroxytryptamine, morphine and adenosine. Pain, 1992, 50, 113-118.	4.2	30
79	8-Phenyltheophylline reverses the antinociceptive action of morphine in the periaqueductal gray. Neuropharmacology, 1991, 30, 871-877.	4.1	16
80	5-Hydroxytryptamine releases adenosine and cyclic AMP from primary afferent nerve terminals in the spinal cord in vivo. Brain Research, 1990, 528, 55-61.	2.2	32
81	Role of ascending and descending serotonergic pathways in the antinociceptive effect of baclofen. Naunyn-Schmiedeberg's Archives of Pharmacology, 1988, 337, 359-65.	3.0	12
82	Role of C-proteins and adenylate cyclase in antinociception produced by intrathecal purines. European Journal of Pharmacology, 1988, 156, 25-34.	3.5	20
83	5-Hydroxytryptamine releases adenosine from primary afferent nerve terminals in the spinal cord. Brain Research, 1988, 462, 346-349.	2.2	32
84	Morphine releases endogenous adenosine from the spinal cord in vivo. European Journal of Pharmacology, 1987, 141, 169-170.	3.5	54
85	Adenosine Receptors. , 0, , 137-152.		1