
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8996578/publications.pdf Version: 2024-02-01

IEDDE KADI

#	Article	IF	CITATIONS
1	Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin. BBA - Proteins and Proteomics, 2000, 1479, 321-331.	2.1	127
2	Sabatier Principle for Interfacial (Heterogeneous) Enzyme Catalysis. ACS Catalysis, 2018, 8, 11966-11972.	11.2	116
3	An Inverse Michaelis–Menten Approach for Interfacial Enzyme Kinetics. ACS Catalysis, 2017, 7, 4904-4914.	11.2	102
4	Pre-steady-state Kinetics for Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A. Journal of Biological Chemistry, 2012, 287, 18451-18458.	3.4	100
5	A kinetic model for the burst phase of processive cellulases. FEBS Journal, 2011, 278, 1547-1560.	4.7	86
6	Product inhibition of five Hypocrea jecorina cellulases. Enzyme and Microbial Technology, 2013, 52, 163-169.	3.2	85
7	Transient Kinetics and Rate-Limiting Steps for the Processive Cellobiohydrolase Cel7A: Effects of Substrate Structure and Carbohydrate Binding Domain. Biochemistry, 2013, 52, 8938-8948.	2.5	73
8	The synergy between LPMOs and cellulases in enzymatic saccharification of cellulose is both enzyme- and substrate-dependent. Biotechnology Letters, 2020, 42, 1975-1984.	2.2	63
9	Kinetics of Cellobiohydrolase (Cel7A) Variants with Lowered Substrate Affinity. Journal of Biological Chemistry, 2014, 289, 32459-32468.	3.4	58
10	Comparative Biochemistry of Four Polyester (PET) Hydrolases**. ChemBioChem, 2021, 22, 1627-1637.	2.6	54
11	Origin of Initial Burst in Activity for Trichoderma reesei endo-Glucanases Hydrolyzing Insoluble Cellulose. Journal of Biological Chemistry, 2012, 287, 1252-1260.	3.4	53
12	Temperature Effects on Kinetic Parameters and Substrate Affinity of Cel7A Cellobiohydrolases. Journal of Biological Chemistry, 2015, 290, 22193-22202.	3.4	53
13	A comparative study of activity and apparent inhibition of fungal βâ€glucosidases. Biotechnology and Bioengineering, 2010, 107, 943-952.	3.3	50
14	A steadyâ€state theory for processive cellulases. FEBS Journal, 2013, 280, 3952-3961.	4.7	50
15	Xylan oligosaccharides and cellobiohydrolase I (TrCel7A) interaction and effect on activity. Biotechnology for Biofuels, 2011, 4, 45.	6.2	48
16	An amperometric enzyme biosensor for realâ€ŧime measurements of cellobiohydrolase activity on insoluble cellulose. Biotechnology and Bioengineering, 2012, 109, 3199-3204.	3.3	40
17	Systematic deletions in the cellobiohydrolase (CBH) Cel7A from the fungus Trichoderma reesei reveal flexible loops critical for CBH activity. Journal of Biological Chemistry, 2019, 294, 1807-1815.	3.4	40
18	Correlation of structure, function and protein dynamics in GH7 cellobiohydrolases from Trichoderma atroviride, T. reesei and T. harzianum. Biotechnology for Biofuels, 2018, 11, 5.	6.2	37

#	Article	IF	CITATIONS
19	Probing Substrate Interactions in the Active Tunnel of a Catalytically Deficient Cellobiohydrolase (Cel7). Journal of Biological Chemistry, 2015, 290, 2444-2454.	3.4	36
20	Michaelis–Menten equation for degradation of insoluble substrate. Mathematical Biosciences, 2018, 296, 93-97.	1.9	36
21	A suspension-based assay and comparative detection methods for characterization of polyethylene terephthalate hydrolases. Analytical Biochemistry, 2020, 607, 113873.	2.4	35
22	Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A. Journal of Biological Chemistry, 2016, 291, 26013-26023.	3.4	31
23	Promoting and Impeding Effects of Lytic Polysaccharide Monooxygenases on Glycoside Hydrolase Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 14117-14126.	6.7	30
24	Sabatier Principle for Rationalizing Enzymatic Hydrolysis of a Synthetic Polyester. Jacs Au, 2022, 2, 1223-1231.	7.9	30
25	Free Energy Diagram for the Heterogeneous Enzymatic Hydrolysis of Glycosidic Bonds in Cellulose. Journal of Biological Chemistry, 2015, 290, 22203-22211.	3.4	29
26	Rate of Threading a Cellulose Chain into the Binding Tunnel of a Cellulase. Journal of Physical Chemistry B, 2016, 120, 5591-5600.	2.6	29
27	An enzymatic signal amplification system for calorimetric studies of cellobiohydrolases. Analytical Biochemistry, 2010, 404, 140-148.	2.4	27
28	Higher Order Inclusion Complexes and Secondary Interactions Studied by Global Analysis of Calorimetric Titrations. Analytical Chemistry, 2012, 84, 2305-2312.	6.5	27
29	Kinetics of Enzymatic High-Solid Hydrolysis of Lignocellulosic Biomass Studied by Calorimetry. Applied Biochemistry and Biotechnology, 2011, 163, 626-635.	2.9	25
30	Exoâ€exo synergy between Cel6A and Cel7A from <i>Hypocrea jecorina</i> : Role of carbohydrate binding module and the endo″ytic character of the enzymes. Biotechnology and Bioengineering, 2017, 114, 1639-1647.	3.3	24
31	Rateâ€limiting step and substrate accessibility of cellobiohydrolase Cel6A from <i>TrichodermaÂreesei</i> . FEBS Journal, 2018, 285, 4482-4493.	4.7	23
32	Reversibility of Substrate Adsorption for the Cellulases Cel7A, Cel6A, and Cel7B from <i>Hypocrea jecorina</i> . Langmuir, 2014, 30, 12602-12609.	3.5	21
33	Loop variants of the thermophile <i>Rasamsonia emersonii</i> Cel7A with improved activity against cellulose. Biotechnology and Bioengineering, 2017, 114, 53-62.	3.3	21
34	Physical constraints and functional plasticity of cellulases. Nature Communications, 2021, 12, 3847.	12.8	21
35	Adsorption of enzymes with hydrolytic activity on polyethylene terephthalate. Enzyme and Microbial Technology, 2021, 152, 109937.	3.2	21
36	A graphene screen-printed carbon electrode for real-time measurements of unoccupied active sites in a cellulase. Analytical Biochemistry, 2014, 447, 162-168.	2.4	19

#	Article	IF	CITATIONS
37	Extending the hydrophobic cavity of β-cyclodextrin results in more negative heat capacity changes but reduced binding affinities. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 78, 351-361.	1.6	19
38	A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases. Enzyme and Microbial Technology, 2014, 58-59, 68-74.	3.2	19
39	The influence of different linker modifications on the catalytic activity and cellulose affinity of cellobiohydrolase Cel7A from Hypocrea jecorina. Protein Engineering, Design and Selection, 2017, 30, 495-501.	2.1	19
40	Impact of Alginate Mannuronic-Guluronic Acid Contents and pH on Protein Binding Capacity and Complex Size. Biomacromolecules, 2021, 22, 649-660.	5.4	19
41	Mechanism of product inhibition for cellobiohydrolase Cel7A during hydrolysis of insoluble cellulose. Biotechnology and Bioengineering, 2016, 113, 1178-1186.	3.3	16
42	Endo/exoâ€ s ynergism of cellulases increases with substrate conversion. Biotechnology and Bioengineering, 2017, 114, 696-700.	3.3	16
43	In Situ Stability of Substrate-Associated Cellulases Studied by DSC. Langmuir, 2014, 30, 7134-7142.	3.5	15
44	Direct kinetic comparison of the two cellobiohydrolases Cel6A and Cel7A from Hypocrea jecorina. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1739-1745.	2.3	15
45	Removal of N-linked glycans in cellobiohydrolase Cel7A from Trichoderma reesei reveals higher activity and binding affinity on crystalline cellulose. Biotechnology for Biofuels, 2020, 13, 136.	6.2	15
46	Substrate binding in the processive cellulase Cel7A: Transition state of complexation and roles of conserved tryptophan residues. Journal of Biological Chemistry, 2020, 295, 1454-1463.	3.4	14
47	Thermoactivation of a cellobiohydrolase. Biotechnology and Bioengineering, 2018, 115, 831-838.	3.3	13
48	lsothermal Titration Calorimetry Study of Brine–Oil–Rock Interactions. Energy & Fuels, 2018, 32, 7338-7346.	5.1	12
49	A practical approach to steady-state kinetic analysis of cellulases acting on their natural insoluble substrate. Analytical Biochemistry, 2019, 586, 113411.	2.4	11
50	Structural and biochemical characterization of a family 7 highly thermostable endoglucanase from the fungus <i>Rasamsonia emersonii</i> . FEBS Journal, 2020, 287, 2577-2596.	4.7	11
51	A comparative biochemical investigation of the impeding effect of C1-oxidizing LPMOs on cellobiohydrolases. Journal of Biological Chemistry, 2021, 296, 100504.	3.4	11
52	Virtual Bioprospecting of Interfacial Enzymes: Relating Sequence and Kinetics. ACS Catalysis, 2022, 12, 7427-7435.	11.2	11
53	Anomeric Selectivity and Product Profile of a Processive Cellulase. Biochemistry, 2017, 56, 167-178.	2.5	10
54	Interrelationships between cellulase activity and cellulose particle morphology. Cellulose, 2016, 23, 2349-2361.	4.9	8

#	Article	IF	CITATIONS
55	A biochemical comparison of fungal GH6 cellobiohydrolases. Biochemical Journal, 2019, 476, 2157-2172.	3.7	7
56	Functional analysis of chimeric TrCel6A enzymes with different carbohydrate binding modules. Protein Engineering, Design and Selection, 2019, 32, 401-409.	2.1	7
57	pH profiles of cellulases depend on the substrate and architecture of the binding region. Biotechnology and Bioengineering, 2020, 117, 382-391.	3.3	7
58	Computing Cellulase Kinetics with a Two-Domain Linear Interaction Energy Approach. ACS Omega, 2021, 6, 1547-1555.	3.5	7
59	A quenched-flow system for measuring heterogeneous enzyme kinetics with sub-second time resolution. Enzyme and Microbial Technology, 2017, 105, 45-50.	3.2	6
60	Activity of fungal β-glucosidases on cellulose. Biotechnology for Biofuels, 2020, 13, 121.	6.2	5
61	A steady-state approach for inhibition of heterogeneous enzyme reactions. Biochemical Journal, 2020, 477, 1971-1982.	3.7	5
62	Selective pressure on an interfacial enzyme: Functional roles of a highly conserved asparagine residue in a cellulase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140359.	2.3	4
63	Molecular recognition in the product site of cellobiohydrolase Cel7A regulates processive step length. Biochemical Journal, 2020, 477, 99-110.	3.7	4