
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8995783/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapeutic Drug Monitoring of Antibiotic Drugs: The Role of the Clinical Laboratory. Therapeutic Drug Monitoring, 2022, 44, 32-49.	2.0	6
2	Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Therapeutic Drug Monitoring, 2021, 43, 150-200.	2.0	89
3	The Impact of CYP3A4*22 on Tacrolimus Pharmacokinetics and Outcome in Clinical Practice at a Single Kidney Transplant Center. Frontiers in Genetics, 2019, 10, 871.	2.3	17
4	Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Therapeutic Drug Monitoring, 2019, 41, 261-307.	2.0	374
5	Pharmacokinetic and Pharmacodynamic Drug Monitoring of Direct-Acting Oral Anticoagulants: Where Do We Stand?. Therapeutic Drug Monitoring, 2019, 41, 180-191.	2.0	30
6	Improving Therapeutic Decisions: Pharmacodynamic Monitoring as an Integral Part of Therapeutic Drug Monitoring. Therapeutic Drug Monitoring, 2019, 41, 111-114.	2.0	19
7	Validation of a high-performance liquid chromatography method for thiopurine S-methyltransferase activity in whole blood using 6-mercaptopurine as substrate. Clinical Chemistry and Laboratory Medicine, 2018, 56, 803-809.	2.3	3
8	Multicenter Evaluation of a New Electrochemiluminescence Immunoassay for Everolimus Concentrations in Whole Blood. Therapeutic Drug Monitoring, 2018, 40, 59-68.	2.0	7
9	Measurement of sirolimus concentrations in human blood using an automated electrochemiluminescence immunoassay (ECLIA): a multicenter evaluation. Clinical Chemistry and Laboratory Medicine, 2018, 56, 764-775.	2.3	8
10	Therapeutic Drug Monitoring of Everolimus: Comparability of Concentrations Determined by 2 Immunoassays and a Liquid Chromatography Tandem Mass Spectrometry Method. Therapeutic Drug Monitoring, 2017, 39, 102-108.	2.0	12
11	Optimizing everolimus exposure when combined with calcineurin inhibitors in solid organ transplantation. Transplantation Reviews, 2017, 31, 151-157.	2.9	19
12	Pharmacokinetics and Clinical Outcomes of Generic Tacrolimus (Hexal) Versus Branded Tacrolimus in De Novo Kidney Transplant Patients. Transplantation, 2017, 101, 2780-2788.	1.0	13
13	Barcelona Consensus on Biomarker-Based Immunosuppressive Drugs Management in Solid Organ Transplantation. Therapeutic Drug Monitoring, 2016, 38, S1-S20.	2.0	78
14	Analytical Aspects of the Implementation of Biomarkers in Clinical Transplantation. Therapeutic Drug Monitoring, 2016, 38, S80-S92.	2.0	6
15	Performance of a phosphoflow assay to determine phosphorylation of S6 ribosomal protein as a pharmacodynamic read out for mTOR inhibition. Clinical Biochemistry, 2016, 49, 1181-1187.	1.9	5
16	Therapeutic Drug Monitoring of Everolimus. Therapeutic Drug Monitoring, 2016, 38, 143-169.	2.0	102
17	Analytical evaluation of a real-time PCR-based DNA demethylation assay to assess the frequency of naturally occurring regulatory T cells in peripheral blood. Clinical Biochemistry, 2016, 49, 1173-1180.	1.9	1
18	Assuring the Proper Analytical Performance of Measurement Procedures for Immunosuppressive Drug Concentrations in Clinical Practice. Therapeutic Drug Monitoring, 2016, 38, 170-189.	2.0	95

MARIA SHIPKOVA

#	Article	IF	CITATIONS
19	Simultaneous determination of mycophenolate and its metabolite mycophenolate-7-o-glucuronide with an isocratic HPLC-UV-based method in human plasma and stability evaluation. Scandinavian Journal of Clinical and Laboratory Investigation, 2016, 76, 612-619.	1.2	5
20	Analytical Validation and Cross-Validation of an NFAT-Regulated Gene Expression Assay for Pharmacodynamic Monitoring of Therapy With Calcineurin Inhibitors. Therapeutic Drug Monitoring, 2016, 38, 711-716.	2.0	8
21	LC–MS/MS as a tool for TDM services: Where are we?. Clinical Biochemistry, 2016, 49, 1009-1023.	1.9	65
22	T-Cell Surface Antigens and sCD30 as Biomarkers of the Risk of Rejection in Solid Organ Transplantation. Therapeutic Drug Monitoring, 2016, 38, S29-S35.	2.0	1
23	Editorial: Immune monitoring in solid organ transplantation. Clinical Biochemistry, 2016, 49, 317-319.	1.9	18
24	Liquid chromatography tandem mass spectrometry for therapeutic drug monitoring of immunosuppressive drugs: Achievements, lessons and open issues. TrAC - Trends in Analytical Chemistry, 2016, 84, 23-33.	11.4	22
25	Biomarker monitoring in immunosuppressant therapy. , 2016, , 125-152.		1
26	Comparing the effect of isotopically labeled or structural analog internal standards on the performance of a LC-MS/MS method to determine ciclosporin A, everolimus, sirolimus and tacrolimus in whole blood. Clinical Chemistry and Laboratory Medicine, 2016, 54, 437-46.	2.3	18
27	Lymphocyte surface molecules as immune activation biomarkers. Clinical Biochemistry, 2016, 49, 347-354.	1.9	39
28	Biomarkers in blood for individualization of the pharmacotherapy with immunosuppressive drugs after transplantation of solid organs. Laboratoriums Medizin, 2015, 38, .	0.6	0
29	Comparability and Imprecision of 8 Frequently Used Commercially Available Immunoassays for Therapeutic Drug Monitoring. Therapeutic Drug Monitoring, 2014, 36, 433-441.	2.0	29
30	Multicenter Analytical Evaluation of the Automated Electrochemiluminescence Immunoassay for Cyclosporine. Therapeutic Drug Monitoring, 2014, 36, 640-650.	2.0	23
31	Biomarker im Blut zur Individualisierung der immunsuppressiven Therapie nach der Transplantation solider Organe. Laboratoriums Medizin, 2014, 38, 333-343.	0.6	0
32	Multi-center analytical evaluation of a novel automated tacrolimus immunoassay. Clinical Biochemistry, 2014, 47, 1069-1077.	1.9	32
33	CD26/dipeptidyl peptidase IV: A comparative study of healthy persons and kidney transplant recipients before and early after transplantation. Clinical Biochemistry, 2013, 46, 1383-1388.	1.9	7
34	Improved Method for Therapeutic Drug Monitoring of 6-Thioguanine Nucleotides and 6-Methylmercaptopurine in Whole-Blood by LC/MSMS Using Isotope-Labeled Internal Standards. Therapeutic Drug Monitoring, 2013, 35, 313-321.	2.0	31
35	A randomized trial of intensified vs. standard dosing for enteric-coated mycophenolate sodium in de novo kidney transplant recipients: results at 1 year. Clinical Nephrology, 2013, 79, 421-431.	0.7	7

#	Article	IF	CITATIONS
37	Surface markers of lymphocyte activation and markers of cell proliferation. Clinica Chimica Acta, 2012, 413, 1338-1349.	1.1	153
38	Biomarkers in transplantation medicine: Guide to the next level in immunosuppressive therapy. Clinica Chimica Acta, 2012, 413, 1309.	1.1	6
39	Pharmacokinetics and pharmacodynamics of mycophenolate sodium (ECâ€MPS) coâ€administered with cyclosporine in the earlyâ€phase postâ€kidney transplantation. Clinical Transplantation, 2012, 26, 57-66.	1.6	14
40	The proton pump inhibitor pantoprazole and its interaction with enteric-coated mycophenolate sodium in transplant recipients. Journal of Heart and Lung Transplantation, 2011, 30, 565-571.	0.6	30
41	Safety and Efficacy of Intensified Versus Standard Dosing Regimens of Enteric-Coated Mycophenolate Sodium in De Novo Renal Transplant Patients. Transplantation, 2011, 91, 779-785.	1.0	26
42	Association Between Adverse Effects Under Azathioprine Therapy and Inosine Triphosphate Pyrophosphatase Activity in Patients With Chronic Inflammatory Bowel Disease. Therapeutic Drug Monitoring, 2011, 33, 321-328.	2.0	40
43	Association Between Pharmacodynamic Biomarkers and Clinical Events in the Early Phase After Kidney Transplantation: A Single-Center Pilot Study. Therapeutic Drug Monitoring, 2011, 33, 341-349.	2.0	17
44	Increased Cyclosporine Concentrations in the Absence of Cyclosporine Administration. Clinical Chemistry, 2011, 57, 670-673.	3.2	13
45	Investigation of the Crossreactivity of Mycophenolic Acid Glucuronide Metabolites and of Mycophenolate Mofetil in the Cedia MPA Assay. Therapeutic Drug Monitoring, 2010, 32, 79-85.	2.0	27
46	Biomarkers as a Tool for Management of Immunosuppression in Transplant Patients. Therapeutic Drug Monitoring, 2010, 32, 560-572.	2.0	54
47	The acyl glucuronide metabolite of mycophenolic acid induces tubulin polymerization in vitro. Clinical Biochemistry, 2010, 43, 208-213.	1.9	6
48	Pharmacokinetics and Pharmacodynamics of Intensified versus Standard Dosing of Mycophenolate Sodium in Renal Transplant Patients. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 503-511.	4.5	40
49	Bioavailability of Mycophenolate Mofetil and Entericâ€Coated Mycophenolate Sodium Is Differentially Affected by Pantoprazole in Healthy Volunteers. Journal of Clinical Pharmacology, 2009, 49, 1196-1201.	2.0	59
50	Clinical utility of therapeutic drug monitoring of mycophenolic acid in transplantation medicine: Where are we? / Der klinische Nutzen des Therapeutischen Drug Monitoring von Mycophenolsäre in der Transplantationsmedizin: Wo stehen wir?. Laboratoriums Medizin, 2009, 33, 88-98.	0.6	1
51	Irinotecan in Cancer Patients with End-Stage Renal Failure. Annals of Pharmacotherapy, 2009, 43, 363-369.	1.9	20
52	Regulation of IL2 and NUCB1 in Mononuclear Cells Treated With Acyl Glucuronide of Mycophenolic Acid Reveals Effects Independent of Inosine Monophosphate Dehydrogenase Inhibition. Therapeutic Drug Monitoring, 2009, 31, 31-41.	2.0	3
53	Differential Proteomic Analysis of Lymphocytes Treated With Mycophenolic Acid Reveals Caspase 3-Induced Cleavage of Rho GDP Dissociation Inhibitor 2. Therapeutic Drug Monitoring, 2009, 31, 211-217.	2.0	12
54	6-Thioguanine Nucleotide–Adapted Azathioprine Therapy Does Not Lead to Higher Remission Rates Than Standard Therapy in Chronic Active Crohn Disease: Results from a Randomized, Controlled, Open Trial. Clinical Chemistry, 2007, 53, 1306-1314.	3.2	104

#	Article	IF	CITATIONS
55	Analysis of ITPA Phenotype-Genotype Correlation in the Bulgarian Population Revealed a Novel Gene Variant in Exon 6. Therapeutic Drug Monitoring, 2007, 29, 6-10.	2.0	40
56	Proteins identified as targets of the acyl glucuronide metabolite of mycophenolic acid in kidney tissue from mycophenolate mofetil treated rats. Biochimie, 2007, 89, 393-402.	2.6	44
57	Measurement of Erythrocyte Inosine Triphosphate Pyrophosphohydrolase (ITPA) Activity by HPLC and Correlation of ITPA Genotype-Phenotype in a Caucasian Population. Clinical Chemistry, 2006, 52, 240-247.	3.2	97
58	Mycophenolic Acid Interaction With Cyclosporine and Tacrolimus In Vitro and In Vivo. Therapeutic Drug Monitoring, 2005, 27, 123-131.	2.0	18
59	Pharmacokinetics and Bioavailability of Mycophenolic Acid After Intravenous Administration and Oral Administration of Mycophenolate Mofetil to Heart Transplant Recipients. Therapeutic Drug Monitoring, 2005, 27, 315-321.	2.0	34
60	A Simple And Rapid High-performance Liquid Chromatographic Procedure for Determination Of Inosine 5??-monophosphate Dehydrogenase Activity in Isolated Human Mononuclear Blood Cells (Mbc). Therapeutic Drug Monitoring, 2005, 27, 253.	2.0	2
61	Analytic Aspects of Monitoring Therapy with Thiopurine Medications. ChemInform, 2005, 36, no.	0.0	0
62	Association of Inosine Triphosphatase 94C>A and Thiopurine S-Methyltransferase Deficiency with Adverse Events and Study Drop-Outs under Azathioprine Therapy in a Prospective Crohn Disease Study. Clinical Chemistry, 2005, 51, 2282-2288.	3.2	88
63	Glucuronidation in therapeutic drug monitoring. Clinica Chimica Acta, 2005, 358, 2-23.	1.1	47
64	Mycophenolate mofetil in organ transplantation: focus on metabolism, safety and tolerability. Expert Opinion on Drug Metabolism and Toxicology, 2005, 1, 505-526.	3.3	77
65	Determination of Thiopurine Methyltransferase Activity in Isolated Human Erythrocytes Does Not Reflect Putative in Vivo Enzyme Inhibition by Sulfasalazine. Clinical Chemistry, 2004, 50, 438-441.	3.2	18
66	Validation of a Rapid and Sensitive Liquid Chromatography–Tandem Mass Spectrometry Method for Free and Total Mycophenolic Acid. Clinical Chemistry, 2004, 50, 152-159.	3.2	84
67	Identification of protein targets for mycophenolic acid acyl glucuronide in rat liver and colon tissue. Proteomics, 2004, 4, 2728-2738.	2.2	46
68	Circulating cytokines as markers of systemic inflammatory response in severe community-acquired pneumonia. Clinical Biochemistry, 2004, 37, 204-209.	1.9	50
69	SYNERGISTIC EFFECTS OF SIROLIMUS WITH CYCLOSPORINE AND TACROLIMUS: ANALYSIS OF IMMUNOSUPPRESSION ON LYMPHOCYTE PROLIFERATION AND ACTIVATION IN RAT WHOLE BLOOD. Transplantation, 2004, 77, 1154-1162.	1.0	25
70	cDNA Microarray Analysis Reveals New Candidate Genes Possibly Linked to Side Effects Under Mycophenolate Mofetil Therapy. Transplantation, 2004, 78, 1145-1152.	1.0	18
71	Cyclosporin A Absorption Profiles in Pediatric Renal Transplant Recipients Predict the Risk of Acute Rejection. Therapeutic Drug Monitoring, 2004, 26, 415-424.	2.0	28
72	Analytic Aspects of Monitoring Therapy with Thiopurine Medications. Therapeutic Drug Monitoring, 2004, 26, 220-226.	2.0	54

#	Article	IF	CITATIONS
73	Therapie mit Thiopurin-Medikamenten - TDM und Pharmakogenomik der TPMT. Therapy with Thiopurine Drugs - TDM and Pharmacogenomics of TPMT. Laboratoriums Medizin, 2003, 27, 211-221.	0.6	Ο
74	Differences in Nucleotide Hydrolysis Contribute to the Differences between Erythrocyte 6-Thioguanine Nucleotide Concentrations Determined by Two Widely Used Methods. Clinical Chemistry, 2003, 49, 260-268.	3.2	98
75	Therapie mit Thiopurin-Medikamenten TDM – und Pharmakogenomik der TPMT/Therapy with Thiopurine Drugs – TDM and Pharmacogenomics of TPMT. Laboratoriums Medizin, 2003, 27, 211-221.	0.6	0
76	Phenotypic and Genotypic Analysis of Thiopurine S-Methyltransferase Polymorphism in the Bulgarian Population. Therapeutic Drug Monitoring, 2003, 25, 631-636.	2.0	44
77	Acyl Glucuronide Drug Metabolites: Toxicological and Analytical Implications. Therapeutic Drug Monitoring, 2003, 25, 1-16.	2.0	250
78	Determination of Thiopurine Methyltransferase Phenotype in Isolated Human Erythrocytes Using a New Simple Nonradioactive HPLC Method. Therapeutic Drug Monitoring, 2003, 25, 637-644.	2.0	30
79	Erosive enterocolitis in mycophenolate mofetil-treated renal-transplant recipients with persistent afebrile diarrhea. Transplantation, 2003, 75, 665-672.	1.0	142
80	A new acute inflammatory syndrome related to the introduction of mycophenolate mofetil in patients with Wegener's granulomatosis. Nephrology Dialysis Transplantation, 2002, 17, 923-926.	0.7	38
81	Atypical Pharmacokinetics and Metabolism of Mycophenolic Acid in a Young Kidney Transplant Recipient With Impaired Renal Function. Therapeutic Drug Monitoring, 2002, 24, 438-443.	2.0	7
82	Pharmacokinetics and Protein Adduct Formation of the Pharmacologically Active Acyl Glucuronide Metabolite of Mycophenolic Acid in Pediatric Renal Transplant Recipients. Therapeutic Drug Monitoring, 2002, 24, 390-399.	2.0	93
83	Comparison of the Emit Immunoassay with HPLC for Therapeutic Drug Monitoring of Mycophenolic Acid in Pediatric Renal-Transplant Recipients on Mycophenolate Mofetil Therapy. Clinical Chemistry, 2002, 48, 517-525.	3.2	112
84	The Pharmacokinetic-Pharmacodynamic Relationship for Total and Free Mycophenolic Acid in Pediatric Renal Transplant Recipients. Journal of the American Society of Nephrology: JASN, 2002, 13, 759-768.	6.1	225
85	Rapid and Sensitive Liquid Chromatography–Tandem Mass Spectrometry Method for Determination of Monoethylglycinexylidide. Clinical Chemistry, 2001, 47, 1853-1856.	3.2	5
86	Quantification of Mycophenolic Acid in Plasma Samples Collected during and Immediately after Intravenous Administration of Mycophenolate Mofetil. Clinical Chemistry, 2001, 47, 1485-1488.	3.2	21
87	Effect of Cyclosporine Withdrawal on Mycophenolic Acid Pharmacokinetics in Kidney Transplant Recipients With Deteriorating Renal Function: Preliminary Report. Therapeutic Drug Monitoring, 2001, 23, 717-721.	2.0	70
88	Preliminary report on the effect of xenoperfusion with human blood on cyclosporin A metabolism and cytochrome-P-4503A4-mRNA expression in a pig liver perfusion model. Clinical Biochemistry, 2001, 34, 53-57.	1.9	2
89	Induction of cytokine release by the acyl glucuronide of mycophenolic acid: a link to side effects?. Clinical Biochemistry, 2000, 33, 107-113.	1.9	141
90	Mycophenolate mofetil in stem cell transplant patients in relation to plasma level of active metabolite. Clinical Biochemistry, 2000, 33, 203-208.	1.9	26

MARIA SHIPKOVA

#	Article	IF	CITATIONS
91	Determination of the Acyl Glucuronide Metabolite of Mycophenolic Acid in Human Plasma by HPLC and Emit. Clinical Chemistry, 2000, 46, 365-372.	3.2	149
92	The Monoethylglycinexylidide (MEGX) Test as a Marker of Hepatic Dysfunction in Septic Patients with Pneumonia. Clinical Chemistry and Laboratory Medicine, 2000, 38, 1125-8.	2.3	10
93	Pharmacokinetic and Metabolic Investigations of Mycophenolic Acid in Pediatric Patients After Renal Transplantation: Implications for Therapeutic Drug Monitoring. Therapeutic Drug Monitoring, 2000, 22, 20-26.	2.0	171
94	Evaluation of an Immunoassay for Mycophenolic Acid. Therapeutic Drug Monitoring, 2000, 22, 141.	2.0	11
95	MYCOPHENOLATE MOFETIL DECREASES ENDOTHELIAL PROSTAGLANDIN E 2 IN RESPONSE TO ALLOGENEIC T CELLS OR CYTOKINES1. Transplantation, 2000, 69, 1977-1981.	1.0	10
96	Stability of Mycophenolic Acid and Mycophenolic Acid Glucuronide in Human Plasma. Clinical Chemistry, 1999, 45, 127-129.	3.2	19
97	Identification of a Pharmacologically Active Metabolite of Mycophenolic Acid in Plasma of Transplant Recipients Treated with Mycophenolate Mofetil. Clinical Chemistry, 1999, 45, 419-422.	3.2	140
98	Identification of glucoside and carboxylâ€linked glucuronide conjugates of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil. British Journal of Pharmacology, 1999, 126, 1075-1082.	5.4	189
99	Area Under the Plasma Concentration–Time Curve for Total, But Not for Free, Mycophenolic Acid Increases in the Stable Phase After Renal Transplantation: A Longitudinal Study in Pediatric Patients. Therapeutic Drug Monitoring, 1999, 21, 498.	2.0	105
100	Monoethylglycinexylidide (MEGX) liver function test is not compromised by 3-hydroxy MEGX in humans. Hepatology, 1998, 28, 1439-1440.	7.3	4
101	Determination of monoethylglycinexylidide by fluorescence polarization immunoassay in highly icteric serum samples: modified precipitation procedure and HPLC compared. Clinical Chemistry, 1998, 44, 1269-1274.	3.2	8
102	Simultaneous determination of mycophenolic acid and its glucuronide in human plasma using a simple high-performance liquid chromatography procedure. Clinical Chemistry, 1998, 44, 1481-1488.	3.2	121