Daniel E Perea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8995203/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compositional partitioning during early stages of oxidation of a uranium-molybdenum alloy. Scripta Materialia, 2022, 212, 114528.	5.2	5
2	Deciphering the Distribution and Crystal-Chemical Environment of Arsenic, Lead, Silica, Phosphorus, Tin, and Zinc in a Porous Ferrihydrite Grain Using Transmission Electron Microscopy and Atom Probe Tomography. ACS Earth and Space Chemistry, 2022, 6, 558-570.	2.7	4
3	Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nature Nanotechnology, 2022, 17, 759-767.	31.5	318
4	Visualizing the Nanoscale Oxygen and Cation Transport Mechanisms during the Early Stages of Oxidation of Fe–Cr–Ni Alloy Using In Situ Atom Probe Tomography. Advanced Materials Interfaces, 2022, 9, .	3.7	5
5	Element redistributions during early stages of oxidation in a Ni38Cr22Fe20Mn10Co10 multi-principal element alloy. Scripta Materialia, 2021, 194, 113609.	5.2	16
6	Spontaneous phase segregation of Sr ₂ NiO ₃ and SrNi ₂ O ₃ during SrNiO ₃ heteroepitaxy. Science Advances, 2021, 7, .	10.3	12
7	Reply to Comment on "A Mechanistic Understanding of Nonclassical Crystal Growth in Hydrothermally Synthesized Sodium Yttrium Fluoride Nanowires― Chemistry of Materials, 2021, 33, 3862-3864.	6.7	1
8	In Situ Atom Probe Tomography Study of The Influence of Deformation on Early Stages of Oxidation of Fe18Cr10Ni Alloy. Microscopy and Microanalysis, 2021, 27, 986-988.	0.4	0
9	Development of the Operando Atom Probe: The Influence of the electric field on Fe oxidation. Microscopy and Microanalysis, 2021, 27, 1516-1517.	0.4	0
10	Optimal Specimen Preparation for Correlative Atom Probe Tomography and Electron Microscopy of Environmentally Sensitive Materials. Microscopy and Microanalysis, 2021, 27, 2472-2474.	0.4	1
11	Prospects of mapping macromolecular structure and ionic gradients in hydrated biological specimens using Atom Probe Tomography. Microscopy and Microanalysis, 2021, 27, 1518-1518.	0.4	0
12	Formation of pyrophosphates across grain boundaries induces the formation of mismatched but oriented interfaces in silver phosphate polypods. Applied Surface Science, 2021, 563, 149980.	6.1	1
13	Nanoscale microstructure and chemistry of transparent gahnite glass-ceramics revealed by atom probe tomography. Scripta Materialia, 2021, 203, 114110.	5.2	7
14	New frontiers in atom probe tomography: a review of research enabled by cryo and/or vacuum transfer systems. Materials Today Advances, 2020, 7, 100090.	5.2	34
15	Nanoscale Perspectives of Metal Degradation via In Situ Atom Probe Tomography. Topics in Catalysis, 2020, 63, 1606-1622.	2.8	15
16	Rapid assessment of structural and compositional changes during early stages of zirconium alloy oxidation. Npj Materials Degradation, 2020, 4, .	5.8	14
17	Macro to Nanoscale Approaches to Study Mineral Transformations at the Liquid, Organic, Biological Interface Microscopy and Microanalysis, 2020, 26, 1568-1569.	0.4	0
18	In-situ and In-operando Cobalt Oxidation Studied by Atom Probe Tomography. Microscopy and Microanalysis, 2020, 26, 1872-1873.	0.4	0

#	Article	IF	CITATIONS
19	Advanced Cryo-FIB Specimen Preparation and Handling of Environmentally Sensitive Materials for APT Analysis. Microscopy and Microanalysis, 2020, 26, 2094-2095.	0.4	1
20	Petrogenesis, alteration, and shock history of intermediate shergottite Northwest Africa 7042: Evidence for hydrous magmatism on Mars?. Geochimica Et Cosmochimica Acta, 2020, 283, 103-123.	3.9	3
21	Directional Gateway to Metal Oxidation: 3D Chemical Mapping Unfolds Oxygen Diffusional Pathways in Rhodium Nanoparticles. Journal of Physical Chemistry Letters, 2020, 11, 3144-3151.	4.6	14
22	Cryo-based structural characterization and growth model of salt film on metal. Corrosion Science, 2020, 174, 108812.	6.6	15
23	A Mechanistic Understanding of Nonclassical Crystal Growth in Hydrothermally Synthesized Sodium Yttrium Fluoride Nanowires. Chemistry of Materials, 2020, 32, 2753-2763.	6.7	27
24	Tomographic mapping of the nanoscale water-filled pore structure in corroded borosilicate glass. Npj Materials Degradation, 2020, 4, .	5.8	29
25	Calcareous organic matter coatings sequester siderophores in alkaline soils. Science of the Total Environment, 2020, 724, 138250.	8.0	14
26	Direct Observation of Zirconium Alloy Oxidation at the Nanoscale. Microscopy and Microanalysis, 2019, 25, 318-319.	0.4	0
27	Exploring New Science Domains with Atom Probe Tomography Enabled by an Environmental Transfer Hub. Microscopy and Microanalysis, 2019, 25, 276-277.	0.4	1
28	Advanced FIB-based Preparation of Cryogenically-prepared Specimens for APT Analysis. Microscopy and Microanalysis, 2019, 25, 878-879.	0.4	1
29	Surface/Subsurface Interactions During Rh Oxidation Revealed by Atom Probe Tomography and Microscopy. Microscopy and Microanalysis, 2019, 25, 330-331.	0.4	0
30	New Science with Atom Probe Tomography Enabled via an Environmental Transfer Hub. Microscopy and Microanalysis, 2019, 25, 340-341.	0.4	0
31	Visualizing the iron atom exchange front in the Fe(II)-catalyzed recrystallization of goethite by atom probe tomography. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2866-2874.	7.1	52
32	Cryogenic specimens for nanoscale characterization of solid–liquid interfaces. MRS Bulletin, 2019, 44, 949-955.	3.5	12
33	Effects of long-term thermal aging on bulk and local mechanical behavior of ferritic-austenitic duplex stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 720, 130-139.	5.6	21
34	Resolving Iron(II) Sorption and Oxidative Growth on Hematite (001) Using Atom Probe Tomography. Journal of Physical Chemistry C, 2018, 122, 3903-3914.	3.1	26
35	Characterization of CoCu- and CoMn-Based Catalysts for the Fischer–Tropsch Reaction Toward Chain-Lengthened Oxygenates. Topics in Catalysis, 2018, 61, 1016-1023.	2.8	10
36	Three-dimensional nanoscale characterisation of materials by atom probe tomography. International Materials Reviews, 2018, 63, 68-101.	19.3	119

#	Article	IF	CITATIONS
37	The role of metal vacancies during high-temperature oxidation of alloys. Npj Materials Degradation, 2018, 2, .	5.8	35
38	A method for site-specific and cryogenic specimen fabrication of liquid/solid interfaces for atom probe tomography. Ultramicroscopy, 2018, 194, 89-99.	1.9	64
39	Probing the Origin of Interfacial Carriers in SrTiO ₃ –LaCrO ₃ Superlattices. Chemistry of Materials, 2017, 29, 1147-1155.	6.7	19
40	Effect of aging temperature on phase decomposition and mechanical properties in cast duplex stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 690, 365-377.	5.6	26
41	An environmental transfer hub for multimodal atom probe tomography. Advanced Structural and Chemical Imaging, 2017, 3, 12.	4.0	47
42	Overall Water Splitting with Room-Temperature Synthesized NiFe Oxyfluoride Nanoporous Films. ACS Catalysis, 2017, 7, 8406-8412.	11.2	91
43	Heterogeneous Twoâ€Phase Pillars in Epitaxial NiFe ₂ O ₄ â€LaFeO ₃ Nanocomposites. Advanced Materials Interfaces, 2017, 4, 1700396.	3.7	5
44	Visualizing and Quantifying Spinodal Decomposition in a Duplex Stainless Steel. Microscopy and Microanalysis, 2017, 23, 660-661.	0.4	2
45	Characterization of electrical properties in axial Si-Ge nanowire heterojunctions using off-axis electron holography and atom-probe tomography. Journal of Applied Physics, 2016, 120, .	2.5	10
46	Atom probe tomography of nanoscale electronic materials. MRS Bulletin, 2016, 41, 30-34.	3.5	15
47	Pulsed Photothermal Heating of One-Dimensional Nanostructures. Journal of Physical Chemistry C, 2016, 120, 21730-21739.	3.1	3
48	Atom Probe Tomographic Mapping Directly Reveals the Atomic Distribution of Phosphorus in Resin Embedded Ferritin. Scientific Reports, 2016, 6, 22321.	3.3	56
49	Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12934-12939.	7.1	78
50	Uranium isotopic ratio measurements of U 3 O 8 reference materials by atom probe tomography. Journal of Environmental Radioactivity, 2016, 153, 206-213.	1.7	7
51	Probing the Organic/Inorganic Interface of the Ferritin Protein using Atom Probe Tomography. Microscopy and Microanalysis, 2015, 21, 515-516.	0.4	Ο
52	Characterization of Element Partitioning at the Austenite/Ferrite Interface of asCast CF-3 and CF-8 Duplex Stainless Steels. Microscopy and Microanalysis, 2015, 21, 365-366.	0.4	6
53	Singlet-Oxygen Generation from Individual Semiconducting and Metallic Nanostructures during Near-Infrared Laser Trapping. ACS Photonics, 2015, 2, 559-564.	6.6	14
54	Enhancing magnesite formation at low temperature and high CO2 pressure: The impact of seed crystals and minor components. Chemical Geology, 2015, 395, 119-125.	3.3	16

#	Article	IF	CITATIONS
55	Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography. Nature Communications, 2015, 6, 7589.	12.8	139
56	Effects of laser energy and wavelength on the analysis of LiFePO4 using laser assisted atom probe tomography. Ultramicroscopy, 2015, 148, 57-66.	1.9	64
57	Bending-Induced Symmetry Breaking of Lithiation in Germanium Nanowires. Nano Letters, 2014, 14, 4622-4627.	9.1	92
58	Understanding Fayalite Chemistry using Electron Microscopy and Atom Probe Tomography. Microscopy and Microanalysis, 2014, 20, 998-999.	0.4	1
59	In-situ TEM Study of Internal and External Stress on Lithiation behavior of High Capacity Anode Materials with a Large Volume Change. Microscopy and Microanalysis, 2014, 20, 1536-1537.	0.4	0
60	Catalyst Composition and Impurity-Dependent Kinetics of Nanowire Heteroepitaxy. ACS Nano, 2013, 7, 7689-7697.	14.6	11
61	Demonstration of an Electrochemical Liquid Cell for Operando Transmission Electron Microscopy Observation of the Lithiation/Delithiation Behavior of Si Nanowire Battery Anodes. Nano Letters, 2013, 13, 6106-6112.	9.1	265
62	Electron-Rich Driven Electrochemical Solid-State Amorphization in Li–Si Alloys. Nano Letters, 2013, 13, 4511-4516.	9.1	51
63	Identification of an Intrinsic Source of Doping Inhomogeneity in Vapor–Liquid–Solid-Grown Nanowires. Nano Letters, 2013, 13, 199-206.	9.1	54
64	Electronic Origin for the Phase Transition from Amorphous Li _{<i>x</i>} Si to Crystalline Li ₁₅ Si ₄ . ACS Nano, 2013, 7, 6303-6309.	14.6	135
65	Mapping electrostatic profiles across axial <i>p-n</i> junctions in Si nanowires using off-axis electron holography. Applied Physics Letters, 2013, 103, .	3.3	19
66	Mapping the Complex Phase Formation at the Surface of Supercritical CO Reacted Fayalite for Geologic Sequestration of Greenhouse Gases. Microscopy and Microanalysis, 2013, 19, 976-977.	0.4	0
67	Microscopic Characterization of Heterogeneous Catalysts in 3-D and In-situ/Ex-situ. Microscopy and Microanalysis, 2013, 19, 1662-1663.	0.4	0
68	Mapping the Electrostatic Profile Across Axial p-n Junctions in Si nanowires using Off-Axis Electron Holography. Microscopy and Microanalysis, 2012, 18, 1826-1827.	0.4	0
69	Controlling axial p-n heterojunction abruptness through catalyst alloying in vapor-liquid-solid grown semiconductor nanowires. Microscopy and Microanalysis, 2012, 18, 1860-1861.	0.4	0
70	Correlation and Morphology of Dopant Decomposition in Mn and Co Codoped Ge Epitaxial Films. Journal of Physical Chemistry C, 2012, 116, 276-280.	3.1	7
71	Axial SiGe Heteronanowire Tunneling Field-Effect Transistors. Nano Letters, 2012, 12, 5850-5855.	9.1	40
72	Controlling Heterojunction Abruptness in VLS-Grown Semiconductor Nanowires via in situ Catalyst Alloying. Nano Letters, 2011, 11, 3117-3122.	9.1	91

#	Article	IF	CITATIONS
73	Minority Carrier Lifetimes and Surface Effects in VLSâ€Grown Axial p–n Junction Silicon Nanowires. Advanced Materials, 2011, 23, 4306-4311.	21.0	32
74	Correlating dopant distributions and electrical properties of boron-doped silicon nanowires. Applied Physics Letters, 2009, 95, .	3.3	44
75	Nonuniform Nanowire Doping Profiles Revealed by Quantitative Scanning Photocurrent Microscopy. Advanced Materials, 2009, 21, 3067-3072.	21.0	113
76	Direct measurement of dopant distribution in an individual vapour–liquid–solid nanowire. Nature Nanotechnology, 2009, 4, 315-319.	31.5	379
77	Relative Influence of Surface States and Bulk Impurities on the Electrical Properties of Ge Nanowires. Nano Letters, 2009, 9, 3268-3274.	9.1	115
78	Alternative catalysts for VSS growth of silicon and germanium nanowires. Journal of Materials Chemistry, 2009, 19, 849.	6.7	136
79	Tomographic analysis of dilute impurities in semiconductor nanostructures. Journal of Solid State Chemistry, 2008, 181, 1642-1649.	2.9	62
80	High-resolution detection of Au catalyst atoms in Si nanowires. Nature Nanotechnology, 2008, 3, 168-173.	31.5	575
81	Three-Dimensional Nanoscale Composition Mapping of Semiconductor Nanowires. Nano Letters, 2006, 6, 181-185.	9.1	214
82	Composition analysis of single semiconductor nanowires using pulsed-laser atom probe tomography. Applied Physics A: Materials Science and Processing, 2006, 85, 271-275.	2.3	47
83	Comparison of Analytical Techniques for Purity Evaluation of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2005, 127, 3439-3448.	13.7	309
84	Synthesis and Characterization of Water Soluble Single-Walled Carbon Nanotube Graft Copolymers. Journal of the American Chemical Society, 2005, 127, 8197-8203.	13.7	325
85	Extinction Coefficients and Purity of Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2004, 4, 995-1004.	0.9	26
86	Preparation of Single-Walled Carbon Nanotube Reinforced Polystyrene and Polyurethane Nanofibers and Membranes by Electrospinning. Nano Letters, 2004, 4, 459-464.	9.1	502
87	Atom probe tomography and transmission electron microscopy: a powerful combination to characterize the speciation and distribution of Cu in organic matter. Environmental Sciences: Processes and Impacts, 0, , .	3.5	1