
Anna Philpott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8995133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ASCL1 phosphorylation and ID2 upregulation are roadblocks to glioblastoma stem cell differentiation. Scientific Reports, 2022, 12, 2341.	3.3	18
2	Elevated ASCL1 activity creates de novo regulatory elements associated with neuronal differentiation. BMC Genomics, 2022, 23, 255.	2.8	15
3	p57Kip2 imposes the reserve stem cell state of gastric chief cells. Cell Stem Cell, 2022, 29, 826-839.e9.	11.1	17
4	Three-dimensional model of glioblastoma by co-culturing tumor stem cells with human brain organoids. Biology Open, 2021, 10, .	1.2	18
5	The Use of Xenopus for Cell Biology Applications. Cold Spring Harbor Protocols, 2021, 2021, pdb.top105528.	0.3	0
6	Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature, 2021, 594, 442-447.	27.8	56
7	Tracing the cellular basis of islet specification in mouse pancreas. Nature Communications, 2020, 11, 5037.	12.8	14
8	Dephosphorylation of the Proneural Transcription Factor ASCL1 Re-Engages a Latent Post-Mitotic Differentiation Program in Neuroblastoma. Molecular Cancer Research, 2020, 18, 1759-1766.	3.4	14
9	Accelerating drug development for neuroblastoma: Summary of the Second Neuroblastoma Drug Development Strategy forum from Innovative Therapies for Children with Cancer and International Society of Paediatric Oncology Europe Neuroblastoma. European Journal of Cancer, 2020, 136, 52-68.	2.8	42
10	Defining the Identity and Dynamics of Adult Gastric Isthmus Stem Cells. Cell Stem Cell, 2019, 25, 342-356.e7.	11.1	97
11	Analysis of Phosphorylation Status of Ectopically Expressed Proteins in Early Xenopus Embryos. Cold Spring Harbor Protocols, 2019, 2019, pdb.prot105569.	0.3	1
12	Analysis of Chromatin Binding of Ectopically Expressed Proteins in Early <i>Xenopus</i> Embryos. Cold Spring Harbor Protocols, 2019, 2019, pdb.prot105577.	0.3	1
13	Multi-site phosphorylation controls the neurogenic and myogenic activity of E47. Biochemical and Biophysical Research Communications, 2019, 511, 111-116.	2.1	3
14	N-terminal phosphorylation of xHes1 controls inhibition of primary neurogenesis in Xenopus. Biochemical and Biophysical Research Communications, 2019, 509, 557-563.	2.1	2
15	Assessing Ubiquitylation of Individual Proteins Using <i>Xenopus</i> Extract Systems. Cold Spring Harbor Protocols, 2019, 2019, pdb.prot104513.	0.3	1
16	Calculating the Degradation Rate of Individual Proteins Using Xenopus Extract Systems. Cold Spring Harbor Protocols, 2019, 2019, pdb.prot103481.	0.3	2
17	Universality of clone dynamics during tissue development. Nature Physics, 2018, 14, 469-474.	16.7	37
18	Subcellular localisation modulates ubiquitylation and degradation of Ascl1. Scientific Reports, 2018, 8, 4625.	3.3	17

#	Article	IF	CITATIONS
19	Xenopus Models of Cancer: Expanding the Oncologist's Toolbox. Frontiers in Physiology, 2018, 9, 1660.	2.8	11
20	Cell cycle-dependent phosphorylation and regulation of cellular differentiation. Biochemical Society Transactions, 2018, 46, 1083-1091.	3.4	9
21	Neurogenin3 phosphorylation controls reprogramming efficiency of pancreatic ductal organoids into endocrine cells. Scientific Reports, 2018, 8, 15374.	3.3	18
22	The developmental origin of brain tumours: a cellular and molecular framework. Development (Cambridge), 2018, 145, .	2.5	97
23	Defining Lineage Potential and Fate Behavior of Precursors during Pancreas Development. Developmental Cell, 2018, 46, 360-375.e5.	7.0	38
24	Phospho-regulation of ATOH1 Is Required for Plasticity of Secretory Progenitors and Tissue Regeneration. Cell Stem Cell, 2018, 23, 436-443.e7.	11.1	74
25	The N terminus of Ascl1 underlies differing proneural activity of mouse and Xenopus Ascl1 proteins. Wellcome Open Research, 2018, 3, 125.	1.8	4
26	Interaction between opposing modes of phospho-regulation of the proneural proteins Ascl1 and Ngn2. Wellcome Open Research, 2018, 3, 129.	1.8	1
27	Multi-site Neurogenin3 Phosphorylation Controls Pancreatic Endocrine Differentiation. Developmental Cell, 2017, 41, 274-286.e5.	7.0	67
28	Ubiquitin-mediated proteolysis in Xenopus extract. International Journal of Developmental Biology, 2016, 60, 263-270.	0.6	8
29	MyoD phosphorylation on multiple C terminal sites regulates myogenic conversion activity. Biochemical and Biophysical Research Communications, 2016, 481, 97-103.	2.1	12
30	Multi-site phospho-regulation of proneural transcription factors controls proliferation versus differentiation in development and reprogramming. Neurogenesis (Austin, Tex), 2015, 2, e1049733.	1.5	6
31	Multi-site phosphorylation regulates NeuroD4 activity during primary neurogenesis: a conserved mechanism amongst proneural proteins. Neural Development, 2015, 10, 15.	2.4	26
32	Emergence of neuronal diversity from patterning of telencephalic progenitors. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 197-214.	5.9	25
33	Ascl1 phospho-status regulates neuronal differentiation in a <i>Xenopus</i> developmental model of neuroblastoma. DMM Disease Models and Mechanisms, 2015, 8, 429-441.	2.4	29
34	An oncologist׳s friend: How Xenopus contributes to cancer research. Developmental Biology, 2015, 408, 180-187.	2.0	40
35	Cell cycle regulation of proliferation versus differentiation in the central nervous system. Cell and Tissue Research, 2015, 359, 187-200.	2.9	120
36	Ascl1 phospho-status regulates neuronal differentiation in a Xenopus developmental model of neuroblastoma. Development (Cambridge), 2015, 142, e0906-e0906.	2.5	2

#	Article	IF	CITATIONS
37	Phosphorylation in intrinsically disordered regions regulates the activity of Neurogenin2. BMC Biochemistry, 2014, 15, 24.	4.4	17
38	Complex domain interactions regulate stability and activity of closely related proneural transcription factors. Biochemical and Biophysical Research Communications, 2014, 450, 1283-1290.	2.1	8
39	Lineage selection and plasticity in the intestinal crypt. Current Opinion in Cell Biology, 2014, 31, 39-45.	5.4	37
40	Nervous decision-making: to divide or differentiate. Trends in Genetics, 2014, 30, 254-261.	6.7	65
41	The phosphorylation status of Ascl1 is a key determinant of neuronal differentiation and maturation <i>i>in vivo</i> and <i>in vitro</i> . Development (Cambridge), 2014, 141, 2216-2224.	2.5	76
42	Non-canonical ubiquitylation: Mechanisms and consequences. International Journal of Biochemistry and Cell Biology, 2013, 45, 1833-1842.	2.8	130
43	The cell cycle and pluripotency. Biochemical Journal, 2013, 451, 135-143.	3.7	71
44	Post-translational modification of Ngn2 differentially affects transcription of distinct targets to regulate the balance between progenitor maintenance and differentiation. Development (Cambridge), 2012, 139, 1718-1723.	2.5	81
45	Co-ordination of cell cycle and differentiation in the developing nervous system. Biochemical Journal, 2012, 444, 375-382.	3.7	64
46	Complex regulation controls Neurogenin3 proteolysis. Biology Open, 2012, 1, 1264-1272.	1.2	33
47	Neuroblastoma progress on many fronts: The neuroblastoma research symposium. Pediatric Blood and Cancer, 2012, 58, 649-651.	1.5	2
48	Regulation of cell fate determination by Skp1-Cullin1-F-box (SCF) E3 ubiquitin ligases. International Journal of Developmental Biology, 2011, 55, 249-260.	0.6	15
49	Cell cycle-regulated multi-site phosphorylation of Neurogenin 2 coordinates cell cycling with differentiation during neurogenesis. Development (Cambridge), 2011, 138, 4267-4277.	2.5	151
50	Hes6 Is Required for the Neurogenic Activity of Neurogenin and NeuroD. PLoS ONE, 2011, 6, e27880.	2.5	16
51	The F-box protein Cdc4/Fbxw7 is a novel regulator of neural crest development in Xenopus laevis. Neural Development, 2010, 5, 1.	2.4	18
52	Non-canonical ubiquitylation of the proneural protein Ngn2 occurs in both Xenopus embryos and mammalian cells. Biochemical and Biophysical Research Communications, 2010, 400, 655-660.	2.1	27
53	Normal levels of p27Xic1are necessary for somite segmentation and determining pronephric organ size. Organogenesis, 2009, 5, 201-210.	1.2	2
54	Ubiquitylation on Canonical and Non-canonical Sites Targets the Transcription Factor Neurogenin for Ubiquitin-mediated Proteolysis. Journal of Biological Chemistry, 2009, 284, 15458-15468.	3.4	72

#	Article	IF	CITATIONS
55	The Xenopus Cell Cycle: An Overview. Molecular Biotechnology, 2008, 39, 9-19.	2.4	35
56	Cardiac differentiation in Xenopus requires the cyclin-dependent kinase inhibitor, p27Xic1. Cardiovascular Research, 2008, 79, 436-447.	3.8	14
57	Division versus differentiation in the early Xenopus embryo. SEB Experimental Biology Series, 2008, 59, 145-65.	0.1	1
58	Regulation of neurogenin stability by ubiquitin-mediated proteolysis. Biochemical Journal, 2007, 407, 277-284.	3.7	44
59	Cell cycling and differentiation do not require the retinoblastoma protein during early Xenopus development. Developmental Biology, 2007, 303, 311-324.	2.0	14
60	Hes6 is required for MyoD induction during gastrulation. Developmental Biology, 2007, 312, 61-76.	2.0	15
61	The E3 ubiquitin ligase skp2 regulates neural differentiation independent from the cell cycle. Neural Development, 2007, 2, 27.	2.4	13
62	Notch targets the Cdk inhibitor Xic1 to regulate differentiation but not the cell cycle in neurons. EMBO Reports, 2006, 7, 643-648.	4.5	28
63	Ubiquitination of Cyclin-Dependent Kinase Inhibitor, Xic1, is Mediated by the <i>Xenopus</i> F-box Protein xSkp2. Cell Cycle, 2006, 5, 304-314.	2.6	11
64	p27 ^{kip1} independently promotes neuronal differentiation and migration in the cerebral cortex. Genes and Development, 2006, 20, 1511-1524.	5.9	320
65	The <i>Xenopus</i> Cell Cycle: An Overview. , 2005, 296, 095-112.		12
66	Initiation of DNA Replication Requires the RECQL4 Protein Mutated in Rothmund-Thomson Syndrome. Cell, 2005, 121, 887-898.	28.9	263
67	G1/S phase cyclin-dependent kinase overexpression perturbs early development and delays tissue-specific differentiation in Xenopus. Development (Cambridge), 2004, 131, 2577-2586.	2.5	29
68	Cell cycle and cell fate interactions in neural development. Current Opinion in Neurobiology, 2003, 13, 26-33.	4.2	106
69	The developmental expression of cell cycle regulators in Xenopus laevis. Gene Expression Patterns, 2003, 3, 179-192.	0.8	42
70	A single cdk inhibitor, p27Xic1, functions beyond cell cycle regulation to promote muscle differentiation inXenopus. Development (Cambridge), 2003, 130, 71-83.	2.5	57
71	The cdk inhibitor p27Xic1 is required for differentiation of primary neurones in <i>Xenopus</i> . Development (Cambridge), 2003, 130, 85-92.	2.5	122
72	The IGF Pathway Regulates Head Formation by Inhibiting Wnt Signaling in Xenopus. Developmental Biology, 2002, 244, 407-417.	2.0	111

#	Article	IF	CITATIONS
73	Hes6 regulates myogenic differentiation. Development (Cambridge), 2002, 129, 2195-2207.	2.5	58
74	Hes6 regulates myogenic differentiation. Development (Cambridge), 2002, 129, 2195-207.	2.5	30
75	Co-ordinating retinal histogenesis: early cell cycle exit enhances early cell fate determination in the Xenopus retina. Development (Cambridge), 2002, 129, 2435-46.	2.5	51
76	Cell cycle and cell fate in the nervous system. Current Opinion in Neurobiology, 2001, 11, 66-73.	4.2	118
77	Nuclear chaperones. Seminars in Cell and Developmental Biology, 2000, 11, 7-14.	5.0	94
78	p27Xic1, a Cdk Inhibitor, Promotes the Determination of Glial Cells in Xenopus Retina. Cell, 1999, 99, 499-510.	28.9	210
79	Giant Eyes in Xenopus laevis by Overexpression of XOptx2. Cell, 1999, 98, 341-352.	28.9	203
80	Molecular and Cellular Characterization of CRP1, aDrosophilaChromatin Decondensation Protein. Journal of Structural Biology, 1997, 118, 9-22.	2.8	42
81	Hyperphosphorylation of Nucleoplasmin Facilitates Xenopus Sperm Decondensation at Fertilization. Journal of Biological Chemistry, 1996, 271, 7253-7256.	3.4	84
82	Nucleoplasmin remodels sperm chromatin in Xenopus egg extracts. Cell, 1992, 69, 759-767.	28.9	231
83	Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin. Cell, 1991, 65, 569-578.	28.9	273
84	xNgn2 induces expression of predominantly sensory neuron markers in Xenopus whole embryo ectoderm but induces mixed subtype expression in isolated ectoderm explants. Wellcome Open Research, 0, 3, 144.	1.8	0