Carlo Maria Croce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8994603/publications.pdf

Version: 2024-02-01

169 papers 36,946 citations

23500 58 h-index 166 g-index

175 all docs

175
docs citations

175 times ranked

39521 citing authors

#	Article	IF	CITATIONS
1	MicroRNA signatures in human cancers. Nature Reviews Cancer, 2006, 6, 857-866.	12.8	7,008
2	Nonlinear partial differential equations and applications: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15524-15529.	3.3	4,641
3	miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13944-13949.	3.3	3,287
4	Causes and consequences of microRNA dysregulation in cancer. Nature Reviews Genetics, 2009, 10 , $704-714$.	7.7	2,791
5	A MicroRNA Signature Associated with Prognosis and Progression in Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2005, 353, 1793-1801.	13.9	2,255
6	The role of MicroRNAs in human cancer. Signal Transduction and Targeted Therapy, 2016, 1, 15004.	7.1	1,695
7	MicroRNAs in Cancer. Annual Review of Pathology: Mechanisms of Disease, 2014, 9, 287-314.	9.6	1,445
8	miRNAs, Cancer, and Stem Cell Division. Cell, 2005, 122, 6-7.	13.5	1,271
9	Oncogenes and Cancer. New England Journal of Medicine, 2008, 358, 502-511.	13.9	898
10	Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology, 2008, 47, 897-907.	3.6	634
11	Long Noncoding RNA in Prostate, Bladder, and Kidney Cancer. European Urology, 2014, 65, 1140-1151.	0.9	601
12	Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6955-6960.	3.3	557
13	MicroRNA and cancer – A brief overview. Advances in Biological Regulation, 2015, 57, 1-9.	1.4	544
14	p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. Journal of Experimental Medicine, 2011, 208, 875-883.	4.2	480
15	miRNA profiling of cancer. Current Opinion in Genetics and Development, 2013, 23, 3-11.	1.5	394
16	Emerging Role of <i>miR-106b-25/miR-17-92</i> Clusters in the Control of Transforming Growth Factor \hat{l}^2 Signaling. Cancer Research, 2008, 68, 8191-8194.	0.4	369
17	Small non-coding RNA and cancer. Carcinogenesis, 2017, 38, 485-491.	1.3	352
18	Mammalian microRNAs: a small world for fine-tuning gene expression. Mammalian Genome, 2006, 17, 189-202.	1.0	329

#	Article	IF	Citations
19	Interplay between microRNAs and the epigenetic machinery: An intricate network. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 694-701.	0.9	268
20	MicroRNA-135b Promotes Cancer Progression by Acting as a Downstream Effector of Oncogenic Pathways in Colon Cancer. Cancer Cell, 2014, 25, 469-483.	7.7	267
21	tsRNA signatures in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8071-8076.	3.3	202
22	Micro <scp>RNA</scp> s play a central role in molecular dysfunctions linking inflammation with cancer. Immunological Reviews, 2013, 253, 167-184.	2.8	189
23	Dysregulation of a family of short noncoding RNAs, tsRNAs, in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5071-5076.	3.3	183
24	MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood, 2014, 124, 546-554.	0.6	162
25	Oncosuppressive role of p53â€induced miRâ€205 in triple negative breast cancer. Molecular Oncology, 2012, 6, 458-472.	2.1	142
26	Exosome-Derived miR-25-3p and miR-92a-3p Stimulate Liposarcoma Progression. Cancer Research, 2017, 77, 3846-3856.	0.4	141
27	Role of MYC-Regulated Long Noncoding RNAs in Cell Cycle Regulation and Tumorigenesis. Journal of the National Cancer Institute, 2015, 107, .	3.0	139
28	Mutational landscape of gastric adenocarcinoma in Chinese: Implications for prognosis and therapy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1107-1112.	3.3	137
29	MicroRNAs as therapeutic targets in chemoresistance. Drug Resistance Updates, 2013, 16, 47-59.	6. 5	133
30	MicroRNA-224 promotes tumor progression in nonsmall cell lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4288-97.	3.3	130
31	ERK Activation Globally Downregulates miRNAs through Phosphorylating Exportin-5. Cancer Cell, 2016, 30, 723-736.	7.7	125
32	Role of microRNAs in maintaining cancer stem cells. Advanced Drug Delivery Reviews, 2015, 81, 53-61.	6.6	116
33	RNA Nanoparticle-Based Targeted Therapy for Glioblastoma through Inhibition of Oncogenic miR-21. Molecular Therapy, 2017, 25, 1544-1555.	3.7	115
34	$E\hat{1}\frac{1}{4}$ - <i>TCL1</i> mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6250-6255.	3.3	112
35	Mechanisms of PD-L1/PD-1–mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the EÂμ-TCL1 CLL mouse model. Blood, 2015, 126, 212-221.	0.6	111
36	Finally, An Apoptosis-Targeting Therapeutic for Cancer. Cancer Research, 2016, 76, 5914-5920.	0.4	108

#	Article	IF	CITATIONS
37	Nonâ€coding RNAs in cancer initiation and progression and as novel biomarkers. Molecular Oncology, 2011, 5, 483-491.	2.1	102
38	MicroRNA Profiles Discriminate among Colon Cancer Metastasis. PLoS ONE, 2014, 9, e96670.	1.1	99
39	miR-579-3p controls melanoma progression and resistance to target therapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5005-13.	3.3	99
40	miR-15b/16-2 deletion promotes B-cell malignancies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11636-11641.	3.3	98
41	miR-196b-5p–mediated downregulation of TSPAN12 and GATA6 promotes tumor progression in non-small cell lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4347-4357.	3.3	95
42	Tumour predisposition and cancer syndromes as models to study gene–environment interactions. Nature Reviews Cancer, 2020, 20, 533-549.	12.8	93
43	MicroRNAs in melanoma development and resistance to target therapy. Oncotarget, 2017, 8, 22262-22278.	0.8	89
44	MicroRNA-148a reduces tumorigenesis and increases TRAIL-induced apoptosis in NSCLC. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8650-8655.	3.3	86
45	MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b. Oncotarget, 2016, 7, 580-592.	0.8	84
46	Upregulation of long noncoding RNA MIAT in aggressive form of chronic lymphocytic leukemias. Oncotarget, 2016, 7, 54174-54182.	0.8	82
47	RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model. Oncotarget, 2015, 6, 14766-14776.	0.8	78
48	MicroRNAs and Cancer: A Long Story for Short RNAs. Advances in Cancer Research, 2017, 135, 1-24.	1.9	77
49	MicroRNAs: Fundamental facts and involvement in human diseases. Birth Defects Research Part C: Embryo Today Reviews, 2006, 78, 180-189.	3 . 6	74
50	microRNA classifiers are powerful diagnostic/prognostic tools in <i>ALK-</i> , <i>EGFR-</i> , and <i>KRAS</i> -driven lung cancers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14924-14929.	3.3	74
51	Noncoding RNA: Current Deep Sequencing Data Analysis Approaches and Challenges. Human Mutation, 2016, 37, 1283-1298.	1.1	74
52	Role of microRNA in chronic lymphocytic leukemia onset and progression. Journal of Hematology and Oncology, 2015, 8, 12.	6.9	72
53	miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response. Oncotarget, 2016, 7, 786-797.	0.8	70
54	MicroRNAs in diseases and drug response. Current Opinion in Pharmacology, 2008, 8, 661-667.	1.7	69

#	Article	IF	CITATIONS
55	A set of NF-κB–regulated microRNAs induces acquired TRAIL resistance in Lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3355-64.	3.3	68
56	MicroRNA-224 is implicated in lung cancer pathogenesis through targeting caspase-3 and caspase-7. Oncotarget, 2015, 6, 21802-21815.	0.8	63
57	Role of the tRNA-Derived Small RNAs in Cancer: New Potential Biomarkers and Target for Therapy. Advances in Cancer Research, 2017, 135, 173-187.	1.9	60
58	Disruption of miR-29 Leads to Aberrant Differentiation of Smooth Muscle Cells Selectively Associated with Distal Lung Vasculature. PLoS Genetics, 2015, 11, e1005238.	1.5	58
59	FHIT Suppresses Epithelial-Mesenchymal Transition (EMT) and Metastasis in Lung Cancer through Modulation of MicroRNAs. PLoS Genetics, 2014, 10, e1004652.	1.5	56
60	HIF- $1\hat{l}\pm$ promotes autophagic proteolysis of Dicer and enhances tumor metastasis. Journal of Clinical Investigation, 2017, 128, 625-643.	3.9	56
61	MicroRNAs in intestinal barrier function, inflammatory bowel disease and related cancers â€" their effects and therapeutic potentials. Current Opinion in Pharmacology, 2017, 37, 142-150.	1.7	55
62	MYC-repressed long noncoding RNAs antagonize MYC-induced cell proliferation and cell cycle progression. Oncotarget, 2015, 6, 18780-18789.	0.8	53
63	Human anti-nucleolin recombinant immunoagent for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9418-9423.	3.3	53
64	The MicroRNA Family Gets Wider: The IsomiRs Classification and Role. Frontiers in Cell and Developmental Biology, 2021, 9, 668648.	1.8	52
65	Long noncoding RNAs: Undeciphered cellular codes encrypting keys of colorectal cancer pathogenesis. Cancer Letters, 2018, 417, 89-95.	3.2	51
66	miR-130a Deregulates PTEN and Stimulates Tumor Growth. Cancer Research, 2017, 77, 6168-6178.	0.4	50
67	<i>MicroRNA</i> dysregulation to identify therapeutic target combinations for chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10731-10736.	3.3	48
68	Identification of tRNAâ€derived small RNA (tsRNA) responsive to the tumor suppressor, RUNX1, in breast cancer. Journal of Cellular Physiology, 2020, 235, 5318-5327.	2.0	48
69	Dysregulation of different classes of tRNA fragments in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24252-24258.	3.3	45
70	ROR1 expression as a biomarker for predicting prognosis in patients with colorectal cancer. Oncotarget, 2017, 8, 32864-32872.	0.8	43
71	microRNA editing in seed region aligns with cellular changes in hypoxic conditions. Nucleic Acids Research, 2016, 44, 6298-6308.	6.5	41
72	Knockout of both miR-15/16 loci induces acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13069-13074.	3.3	39

#	Article	IF	CITATIONS
73	Selective targeting of point-mutated KRAS through artificial microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4203-E4212.	3.3	38
74	miRNA-mediated TUSC3 deficiency enhances UPR and ERAD to promote metastatic potential of NSCLC. Nature Communications, 2018, 9, 5110.	5.8	38
75	Tissue and exosomal miRNA editing in Non-Small Cell Lung Cancer. Scientific Reports, 2018, 8, 10222.	1.6	38
76	Pluripotent Stem Cell miRNAs and Metastasis in Invasive Breast Cancer. Journal of the National Cancer Institute, 2014, 106, .	3.0	37
77	Extracellular Vesicle Biology in the Pathogenesis of Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1510-1518.	2,5	37
78	Quaking and <i>miR-155 </i> i>interactions in inflammation and leukemogenesis. Oncotarget, 2015, 6, 24599-24610.	0.8	37
79	MAPK15 upregulation promotes cell proliferation and prevents DNA damage in male germ cell tumors. Oncotarget, 2016, 7, 20981-20998.	0.8	37
80	miR-Synth: a computational resource for the design of multi-site multi-target synthetic miRNAs. Nucleic Acids Research, 2014, 42, 5416-5425.	6.5	36
81	An Integrated Approach Identifies Mediators of Local Recurrence in Head and Neck Squamous Carcinoma. Clinical Cancer Research, 2017, 23, 3769-3780.	3.2	36
82	Prognostic and biological significance of the proangiogenic factor EGFL7 in acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4641-E4647.	3.3	36
83	Identification of tRNA-derived ncRNAs in TCGA and NCI-60 panel cell lines and development of the public database tRFexplorer. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	36
84	MicroRNA and ER stress in cancer. Seminars in Cancer Biology, 2021, 75, 3-14.	4.3	36
85	miR-340 predicts glioblastoma survival and modulates key cancer hallmarks through down-regulation of <i>NRAS</i> . Oncotarget, 2016, 7, 19531-19547.	0.8	36
86	Repression of Esophageal Neoplasia and Inflammatory Signaling by Anti-miR-31 Delivery In Vivo. Journal of the National Cancer Institute, 2015, 107, djv220.	3.0	35
87	Fhit–Fdxr interaction in the mitochondria: modulation of reactive oxygen species generation and apoptosis in cancer cells. Cell Death and Disease, 2019, 10, 147.	2.7	35
88	miRNAs in the spotlight: Understanding cancer gene dependency. Nature Medicine, 2011, 17, 935-936.	15.2	34
89	Frontiers of MicroRNA Signature in Non-small Cell Lung Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 643942.	1.8	34
90	Synthetic RNAs for Gene Regulation: Design Principles and Computational Tools. Frontiers in Bioengineering and Biotechnology, 2014, 2, 65.	2.0	33

#	Article	IF	CITATIONS
91	The TLR7/8/9 Antagonist IMO-8503 Inhibits Cancer-Induced Cachexia. Cancer Research, 2018, 78, 6680-6690.	0.4	33
92	Virus-encoded microRNA contributes to the molecular profile of EBV-positive Burkitt lymphomas. Oncotarget, 2016, 7, 224-240.	0.8	33
93	A large scale expression study associates uc.283-plus IncRNA with pluripotent stem cells and human glioma. Genome Medicine, 2014, 6, 76.	3.6	32
94	Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death and Differentiation, 2018, 25, 1885-1904.	5.0	31
95	Novel Mechanisms of Regulation of miRNAs in CLL. Trends in Cancer, 2016, 2, 134-143.	3.8	30
96	WWOX Inhibits Metastasis of Triple-Negative Breast Cancer Cells via Modulation of miRNAs. Cancer Research, 2019, 79, 1784-1798.	0.4	30
97	MicroRNA fingerprints in juvenile myelomonocytic leukemia (JMML) identified miR-150-5p as a tumor suppressor and potential target for treatment. Oncotarget, 2016, 7, 55395-55408.	0.8	30
98	miR-181b as a therapeutic agent for chronic lymphocytic leukemia in the EÎ $\frac{1}{4}$ -TCL1 mouse model. Oncotarget, 2015, 6, 19807-19818.	0.8	29
99	Combined loss of function of two different loci of miR-15/16 drives the pathogenesis of acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12332-12340.	3.3	28
100	Downregulation of miR-15a and miR-16-1 at 13q14 in Chronic Lymphocytic Leukemia. Clinical Chemistry, 2016, 62, 655-656.	1.5	27
101	Circulating Micrornas Predict Survival of Patients with Tumors of Glial Origin. EBioMedicine, 2018, 30, 105-112.	2.7	27
102	Noncoding RNA genes in cancer pathogenesis. Advances in Biological Regulation, 2019, 71, 219-223.	1.4	27
103	Pleiotropic tumor suppressor functions of WWOX antagonize metastasis. Signal Transduction and Targeted Therapy, 2020, 5, 43.	7.1	27
104	MicroRNA dysregulation and esophageal cancer development depend on the extent of zinc dietary deficiency. Oncotarget, 2016, 7, 10723-10738.	0.8	27
105	Exosomal miRNA signatures of pancreatic lesions. BMC Gastroenterology, 2020, 20, 137.	0.8	25
106	The self-assembly of a camptothecin-lysine nanotube. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2834-2838.	1.0	24
107	<i>MDM2</i> Derived from Dedifferentiated Liposarcoma Extracellular Vesicles Induces MMP2 Production from Preadipocytes. Cancer Research, 2019, 79, 4911-4922.	0.4	23
108	A novel fully human anti-NCL immunoRNase for triple-negative breast cancer therapy. Oncotarget, 2016, 7, 87016-87030.	0.8	23

#	Article	IF	CITATIONS
109	Regulated Expression of miR-155 is Required for iNKT Cell Development. Frontiers in Immunology, 2015, 6, 140.	2.2	22
110	Investigating miRNA–IncRNA Interactions: Computational Tools and Resources. Methods in Molecular Biology, 2019, 1970, 251-277.	0.4	22
111	ncRNA Editing: Functional Characterization and Computational Resources. Methods in Molecular Biology, 2019, 1912, 133-174.	0.4	20
112	MicroRNA dysregulation and multi-targeted therapy for cancer treatment. Advances in Biological Regulation, 2020, 75, 100669.	1.4	20
113	Fez1/Lzts1 a new mitotic regulator implicated in cancer development. Cell Division, 2007, 2, 24.	1.1	19
114	miRNA clusters as therapeutic targets for hormone-resistant breast cancer. Expert Review of Endocrinology and Metabolism, 2015, 10, 607-617.	1.2	19
115	Human-like hyperplastic prostate with low ZIP1 induced solely by Zn deficiency in rats. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11091-E11100.	3. 3	19
116	Abrogation of esophageal carcinoma development in miR-31 knockout rats. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6075-6085.	3.3	19
117	MiREDiBase, a manually curated database of validated and putative editing events in microRNAs. Scientific Data, 2021, 8, 199.	2.4	18
118	A mouse model of the fragile gene FHIT: From carcinogenesis to gene therapy and cancer prevention. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 591, 103-109.	0.4	17
119	Discovery and characterization of the feline miRNAome. Scientific Reports, 2017, 7, 9263.	1.6	17
120	Detecting and Characterizing A-To-I microRNA Editing in Cancer. Cancers, 2021, 13, 1699.	1.7	17
121	Discovery and functional implications of a miR-29b-1/miR-29a cluster polymorphism in acute myeloid leukemia. Oncotarget, 2018, 9, 4354-4365.	0.8	16
122	A Fhit-mimetic peptide suppresses annexin A4-mediated chemoresistance to paclitaxel in lung cancer cells. Oncotarget, 2016, 7, 29927-29936.	0.8	16
123	RANBP9 affects cancer cells response to genotoxic stress and its overexpression is associated with worse response to platinum in NSCLC patients. Oncogene, 2018, 37, 6463-6476.	2.6	15
124	MicroRNAs in Skeletal Muscle and Hints on Their Potential Role in Muscle Wasting During Cancer Cachexia. Frontiers in Oncology, 2020, 10, 607196.	1.3	15
125	Integration of metabolomics, transcriptomics, and microRNA expression profiling reveals a miR-143-HK2-glucose network underlying zinc-deficiency-associated esophageal neoplasia. Oncotarget, 2017, 8, 81910-81925.	0.8	14
126	miR-224 Is Significantly Upregulated and Targets Caspase-3 and Caspase-7 During Colorectal Carcinogenesis. Translational Oncology, 2019, 12, 282-291.	1.7	14

#	Article	IF	CITATIONS
127	Determination of absolute expression profiles using multiplexed miRNA analysis. PLoS ONE, 2017, 12, e0180988.	1.1	14
128	The role of p19 and p21 H-Ras proteins and mutants in miRNA expression in cancer and a Costello syndrome cell model. BMC Medical Genetics, 2015, 16, 46.	2.1	13
129	isoTar: Consensus Target Prediction with Enrichment Analysis for MicroRNAs Harboring Editing Sites and Other Variations. Methods in Molecular Biology, 2019, 1970, 211-235.	0.4	13
130	MIR21-induced loss of junctional adhesion molecule A promotes activation of oncogenic pathways, progression and metastasis in colorectal cancer. Cell Death and Differentiation, 2021, 28, 2970-2982.	5.0	13
131	MYC-related microRNAs signatures in non-Hodgkin B-cell lymphomas and their relationships with core cellular pathways. Oncotarget, 2018, 9, 29753-29771.	0.8	13
132	Genome Wide Identification of Recessive Cancer Genes by Combinatorial Mutation Analysis. PLoS ONE, 2008, 3, e3380.	1.1	12
133	Comparative expression profiling of testis-enriched genes regulated during the development of spermatogonial cells. PLoS ONE, 2017, 12, e0175787.	1.1	12
134	<i>Hsa-miR-155-5p</i> drives aneuploidy at early stages of cellular transformation. Oncotarget, 2018, 9, 13036-13047.	0.8	12
135	Translocation t(2;11) in CLL cells results in CXCR4/MAML2 fusion oncogene. Blood, 2014, 124, 259-262.	0.6	11
136	HNRNPL Restrains miR-155 Targeting of BUB1 to Stabilize Aberrant Karyotypes of Transformed Cells in Chronic Lymphocytic Leukemia. Cancers, 2019, 11, 575.	1.7	11
137	Identification of microRNAs implicated in the late differentiation stages of normal B cells suggests a central role for miRNA targets ZEB1 and TP53. Oncotarget, 2017, 8, 11809-11826.	0.8	11
138	MicroRNA signatures and Foxp3+ cell count correlate with relapse occurrence in follicular lymphoma. Oncotarget, 2018, 9, 19961-19979.	0.8	11
139	Will Detection of MicroRNA Biomarkers in Blood Improve the Diagnosis and Survival of Patients With Pancreatic Cancer?. JAMA - Journal of the American Medical Association, 2014, 311, 363.	3.8	10
140	Alterations of mitochondrial biogenesis in chronic lymphocytic leukemia cells with loss of p53. Mitochondrion, 2016, 31, 33-39.	1.6	10
141	Experimental Validation of MicroRNA Targets: Luciferase Reporter Assay. Methods in Molecular Biology, 2019, 1970, 315-330.	0.4	9
142	Prognostic and Biologic Significance of Transfer RNA-Derived Small RNAs (tsRNAs) Expression in Younger Adult Patients (Pts) with Cytogenetically Normal Acute Myeloid Leukemia (CN-AML). Blood, 2018, 132, 89-89.	0.6	9
143	Ectopic expression of PLC $\hat{\in}\hat{\mathbb{P}}^2$ 2 in non $\hat{\in}$ invasive breast tumor cells plays a protective role against malignant progression and is correlated with the deregulation of miR $\hat{\in}$ 146a. Molecular Carcinogenesis, 2019, 58, 708-721.	1.3	8
144	MicroRNAs 221 and 222 Inhibit Normal Erythropoiesis and Erythroleukemic Cell Growth Via Kit Receptor Downmodulation Blood, 2005, 106, 830-830.	0.6	8

#	Article	IF	Citations
145	Small Non-Coding RNAs in Leukemia. Cancers, 2022, 14, 509.	1.7	7
146	Commentary on microRNA Fingerprint in Human Epithelial Ovarian Cancer. Cancer Research, 2016, 76, 6143-6145.	0.4	6
147	<scp>TCL</scp> 1A interacts with <scp>TP</scp> 63 and enhances the survival of Raji Burkitt lymphoma cell line. British Journal of Haematology, 2018, 183, 509-512.	1.2	6
148	Editorial: Epitranscriptomics: The Novel RNA Frontier. Frontiers in Bioengineering and Biotechnology, 2018, 6, 191.	2.0	6
149	The combination of <i>TPL2</i> knockdown and TNFα causes synthetic lethality via caspase-8 activation in human carcinoma cell lines. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14039-14048.	3.3	6
150	Loss of expression of both miR-15/16 loci in CML transition to blast crisis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	6
151	Editorial. Clinical Biochemistry, 2013, 46, 840-841.	0.8	5
152	Experimental Validation of MicroRNA Targets: Mutagenesis of Binding Regions. Methods in Molecular Biology, 2019, 1970, 331-339.	0.4	5
153	Synergistic apoptotic effect of miR-183-5p and Polo-Like kinase 1 inhibitor NMS-P937 in breast cancer cells. Cell Death and Differentiation, 2022, 29, 407-419.	5.0	5
154	Experimental Validation of MicroRNA Targets: Analysis of MicroRNA Targets Through Western Blotting. Methods in Molecular Biology, 2019, 1970, 341-353.	0.4	4
155	The Fhit protein: an opportunity to overcome chemoresistance. Aging, 2016, 8, 3147-3150.	1.4	4
156	MicroRNA Expression and Regulation of Hematopoiesis in CD34+ Cells: A Bioinformatic Circuit Diagram of the Hematopoietic Differentiation Control Blood, 2006, 108, 1334-1334.	0.6	4
157	PDCD1 (PD-1) is a direct target of miR-15a-5p and miR-16-5p. Signal Transduction and Targeted Therapy, 2022, 7, 12.	7.1	4
158	Genetic Manipulation of Homologous Recombination <i>In Vivo</i> Attenuates Intestinal Tumorigenesis. Cancer Prevention Research, 2015, 8, 650-656.	0.7	3
159	MicroRNA Dysregulation to Identify Novel Therapeutic Targets. Current Topics in Microbiology and Immunology, 2017, 407, 191-203.	0.7	3
160	A large fraction of trisomy 12, 17p $sup \hat{a}' \leq sup$, and 11q $sup \hat{a}' \leq sup$ CLL cases carry unidentified microdeletions of $imR-15a/16-1. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .$	3.3	3
161	Alfred G. Knudson (1922–2016). Nature, 2016, 536, 397-397.	13.7	2
162	Anti-miR-135b in colon cancer treatment: Results from a preclinical study Journal of Clinical Oncology, 2012, 30, 457-457.	0.8	2

#	Article	IF	CITATIONS
163	Corrigendum to "The high mobility group A proteins contribute to thyroid cell transformation by regulating miRâ€603 and miRâ€10b expression―[Mol. Oncol. 7 (3) (Jan. 2013) 531–542]. Molecular Oncolog 2014, 8, 159-159.	gy 2. 1	1
164	Editorial: Bioinformatics of Non-Coding RNAs with Applications to Biomedicine: Recent Advances and Open Challenges. Frontiers in Bioengineering and Biotechnology, 2015, 3, 156.	2.0	1
165	Environmental, Genetic, and Viral Causes of Cancer., 0,, 35-56.		0
166	Role of microRNAs in the pathogenesis of human cance. Nucleic Acids Symposium Series, 2009, 53, 25-25.	0.3	0
167	MicroRNA Function in Human Hematopoiesis: Identification of Lineage- and Stage-Specific Expression Profiles, Pivotal Targets and Regulatory Circuitries Blood, 2006, 108, 1197-1197.	0.6	0
168	MicroRNAs 155, -221 and -222 Control Megakaryopoiesis at Progenitor and Precursor Level through Ets-1 Multitargeting Blood, 2006, 108, 1187-1187.	0.6	0
169	Gene-expression profiling of collecting duct carcinoma of the kidney Journal of Clinical Oncology, 2016, 34, 540-540.	0.8	O