Jihua Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/899441/publications.pdf

Version: 2024-02-01

		36203	43802
159	9,335	51	91
papers	citations	h-index	g-index
165	165	165	13863
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Crystal growth of small-molecule organic semiconductors with nucleation additive. Current Applied Physics, 2021, 21, 107-115.	1.1	9
2	Polyferrocenylsilane Semicrystalline Polymer Additive for Solution-Processed p-Channel Organic Thin Film Transistors. Polymers, 2021, 13, 402.	2.0	7
3	Tuning charge transport in organic semiconductors with nanoparticles and hexamethyldisilazane. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	7
4	Printability study of self-supporting graphene oxide-laponite nanocomposites for 3D printing applications. International Journal of Advanced Manufacturing Technology, 2021, 114, 343-355.	1.5	15
5	Phase segregation mechanisms of small moleculeâ€polymer blends unraveled by varying polymer chain architecture. SmartMat, 2021, 2, 367-377.	6.4	18
6	Polymer-Grafted Porous Silica Nanoparticles with Enhanced CO ₂ Permeability and Mechanical Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27411-27418.	4.0	14
7	Harnessing autocatalytic reactions in polymerization and depolymerization. MRS Communications, 2021, 11, 377-390.	0.8	4
8	Synthesis of Poly(ionic Liquid)s- <i>block</i> -poly(methyl Methacrylate) Copolymer-Grafted Silica Particle Brushes with Enhanced CO ₂ Permeability and Mechanical Performance. Langmuir, 2021, 37, 10875-10881.	1.6	7
9	Advanced Electron Microscopy of Nanophased Synthetic Polymers and Soft Complexes for Energy and Medicine Applications. Nanomaterials, 2021, 11, 2405.	1.9	8
10	Inside Front Cover: Volume 2 Issue 3. SmartMat, 2021, 2, iii.	6.4	0
11	Operando Analysis of Gas Evolution in TiNb ₂ O ₇ (TNO)-Based Anodes for Advanced High-Energy Lithium-Ion Batteries under Fast Charging. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55145-55155.	4.0	15
12	Effect of Polymer Molecular Weight on Morphology and Charge Transport of Small-Molecular Organic Semiconductors. Electronic Materials Letters, 2020, 16, 441-450.	1.0	19
13	Conjugated Polymer Controlled Morphology and Charge Transport of Small-Molecule Organic Semiconductors. Scientific Reports, 2020, 10, 4344.	1.6	39
14	Ultra-low misorientation angle in small-molecule semiconductor/polyethylene oxide blends for organic thin film transistors. Journal of Polymer Research, 2020, 27, 1.	1.2	23
15	A facile and novel route to improve TIPS pentacene based organic thin film transistor performance with elastomer. Synthetic Metals, 2020, 262, 116337.	2.1	17
16	Improving Energy Storage and Ion Transport of Soft Nanostructured Complexes Using Regulated Crystallization. ECS Meeting Abstracts, 2020, MA2020-02, 3752-3752.	0.0	O
17	Polymer additive controlled morphology for high performance organic thin film transistors. Soft Matter, 2019, 15, 5790-5803.	1.2	40
18	Review Article: Crystal alignment for high performance organic electronics devices. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 040801.	0.9	42

#	Article	IF	CITATIONS
19	Solvent-Free Synthesis of CuO/HKUST-1 Composite and Its Photocatalytic Application. Inorganic Chemistry, 2019, 58, 8332-8338.	1.9	51
20	An Ionomeric Renewable Thermoplastic from Ligninâ€Reinforced Rubber. Macromolecular Rapid Communications, 2019, 40, e1900059.	2.0	10
21	Pressureâ€Induced Diels–Alder Reactions in C ₆ H ₆ â€C ₆ F ₆ Cocrystal towards Graphane Structure. Angewandte Chemie - International Edition, 2019, 58, 1468-1473.	7.2	36
22	Side chain dynamics in semiconducting polymer MEHâ€PPV. Journal of Applied Polymer Science, 2019, 136, 47394.	1.3	3
23	Same solution synthesis and self-assembly of porous silica nanoparticles into microspheres. Applied Surface Science, 2019, 467-468, 634-639.	3.1	8
24	Aromatic Polyimide/Graphene Composite Organic Cathodes for Fast and Sustainable Lithiumâ€ion Batteries. ChemSusChem, 2018, 11, 763-772.	3.6	58
25	Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings. Journal of Power Sources, 2018, 390, 153-164.	4.0	68
26	Synthesis of Nitrogen and Sulfur Codoped Nanoporous Carbons from Algae: Role in CO ₂ Separation. ACS Omega, 2018, 3, 18592-18602.	1.6	23
27	Ultrastructure and Enzymatic Hydrolysis of Deuterated Switchgrass. Scientific Reports, 2018, 8, 13226.	1.6	9
28	Amending the Structure of Renewable Carbon from Biorefinery Waste-Streams for Energy Storage Applications. Scientific Reports, 2018, 8, 8355.	1.6	10
29	Influence of hydrogen peroxide in enhancing photocatalytic activity of carbon nitride under visible light: An insight into reaction intermediates. Journal of Environmental Chemical Engineering, 2018, 6, 4927-4936.	3.3	52
30	Reply to Comment on Polymorphism in the 1:1 Chargeâ€Transfer Complex DBTTFâ€TCNQ and Its Effects on Optical and Electronic Properties. Advanced Electronic Materials, 2017, 3, 1600521.	2.6	2
31	Controlling interfacial properties in supported metal oxide catalysts through metal–organic framework templating. Journal of Materials Chemistry A, 2017, 5, 13565-13572.	5.2	15
32	CO2 capture in lignin-derived and nitrogen-doped hierarchical porous carbons. Carbon, 2017, 121, 257-266.	5.4	119
33	Nanoporous Boron Nitride as Exceptionally Thermally Stable Adsorbent: Role in Efficient Separation of Light Hydrocarbons. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14506-14517.	4.0	41
34	Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold. Nanoscale, 2017, 9, 7071-7080.	2.8	18
35	Investigations on the Phase Diagram and Interaction Parameter of Poly(styrene- <i>b</i> -1,3-cyclohexadiene) Copolymers. Macromolecules, 2017, 50, 2354-2363.	2.2	5
36	Adsorptive separation of CO2 in sulfur-doped nanoporous carbons: Selectivity and breakthrough simulation. Microporous and Mesoporous Materials, 2017, 241, 226-237.	2.2	53

#	Article	IF	CITATIONS
37	Adsorptive recovery of neodymium and dysprosium in phosphorous functionalized nanoporous carbon. Journal of Environmental Chemical Engineering, 2017, 5, 4684-4692.	3.3	34
38	Interface engineering to enhance charge injection and transport in solution-deposited organic transistors. Organic Electronics, 2017, 50, 100-105.	1.4	41
39	Controlled Assembly of Lignocellulosic Biomass Components and Properties of Reformed Materials. ACS Sustainable Chemistry and Engineering, 2017, 5, 8044-8052.	3.2	22
40	Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium ion batteries. Nano Energy, 2017, 40, 9-19.	8.2	72
41	Sustainable Energyâ€Storage Materials from Lignin–Graphene Nanocompositeâ€Derived Porous Carbon Film. Energy Technology, 2017, 5, 1927-1935.	1.8	29
42	Diblock copolymers of polystyreneâ€ <i>b</i> â€poly(1,3â€cyclohexadiene) exhibiting unique threeâ€phase microdomain morphologies. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1564-1572.	2.4	5
43	Comparative study of plant responses to carbon-based nanomaterials with different morphologies. Nanotechnology, 2016, 27, 265102.	1.3	80
44	Controlled release of alendronate from nitrogen-doped mesoporous carbon. Microporous and Mesoporous Materials, 2016, 229, 8-13.	2.2	18
45	An approach towards tailoring interfacial structures and properties of multiphase renewable thermoplastics from lignin–nitrile rubber. Green Chemistry, 2016, 18, 5423-5437.	4.6	38
46	Noncompetitive and Competitive Adsorption of Heavy Metals in Sulfur-Functionalized Ordered Mesoporous Carbon. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34132-34142.	4.0	148
47	Polymorphism in the 1:1 Chargeâ€Transfer Complex DBTTF–TCNQ and Its Effects on Optical and Electronic Properties. Advanced Electronic Materials, 2016, 2, 1600203.	2.6	83
48	Unraveling the Fundamental Mechanisms of Solvent-Additive-Induced Optimization of Power Conversion Efficiencies in Organic Photovoltaic Devices. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20220-20229.	4.0	8
49	Hierarchically Superstructured Metal Sulfides: Facile Perturbationâ€Assisted Nanofusion Synthesis and Visible Light Photocatalytic Characterizations. ChemNanoMat, 2016, 2, 1104-1110.	1.5	8
50	A New Class of Renewable Thermoplastics with Extraordinary Performance from Nanostructured Ligninâ€Elastomers. Advanced Functional Materials, 2016, 26, 2677-2685.	7.8	87
51	Photoresponsive Liquid Crystalline Epoxy Networks with Shape Memory Behavior and Dynamic Ester Bonds. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15750-15757.	4.0	123
52	A study on the cytotoxicity of carbon-based materials. Materials Science and Engineering C, 2016, 68, 101-108.	3.8	28
53	Recyclable Polymers: A New Class of Renewable Thermoplastics with Extraordinary Performance from Nanostructured Ligninâ€Elastomers (Adv. Funct. Mater. 16/2016). Advanced Functional Materials, 2016, 26, 2676-2676.	7.8	0
54	Enhancing low-temperature activity and durability of Pd-based diesel oxidation catalysts using ZrO2 supports. Applied Catalysis B: Environmental, 2016, 187, 181-194.	10.8	50

#	Article	IF	CITATIONS
55	Mesoporous xEr ₂ O ₃ ·CoTiO ₃ composite oxide catalysts for low temperature dehydrogenation of ethylbenzene to styrene using CO ₂ as a soft oxidant. RSC Advances, 2016, 6, 32989-32993.	1.7	4
56	Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries. Journal of Materials Chemistry A, 2016, 4, 4288-4295.	5.2	30
57	A Poly(acrylonitrile)-Functionalized Porous Aromatic Framework Synthesized by Atom-Transfer Radical Polymerization for the Extraction of Uranium from Seawater. Industrial & Engineering Chemistry Research, 2016, 55, 4125-4129.	1.8	58
58	Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors. AIP Advances, 2015, 5, .	0.6	48
59	Enhancement in Organic Photovoltaic Efficiency through the Synergistic Interplay of Molecular Donor Hydrogen Bonding and π‧tacking. Advanced Functional Materials, 2015, 25, 5166-5177.	7.8	27
60	Reciprocated suppression of polymer crystallization toward improved solid polymer electrolytes: Higher ion conductivity and tunable mechanical properties. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1450-1457.	2.4	24
61	Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance. Chemical Communications, 2015, 51, 5910-5913.	2.2	30
62	Ultrahigh surface area carbon from carbonated beverages: Combining self-templating process and in situ activation. Carbon, 2015, 93, 39-47.	5 . 4	27
63	Effect of autoclave process on the quality of thermoplastic composite truncated cones manufactured using automated fiber placement technique. Science and Engineering of Composite Materials, 2015, 22, 175-186.	0.6	1
64	Synthesis, characterization and catalytic activity of novel large network polystyrene-immobilized organic bases. RSC Advances, 2015, 5, 107200-107208.	1.7	20
65	Novel cross-linked polystyrenes with large space network as tailor-made catalyst supports for sustainable media. European Polymer Journal, 2015, 73, 391-401.	2.6	31
66	Critical role of domain crystallinity, domain purity and domain interface sharpness for reduced bimolecular recombination in polymer solar cells. Nano Energy, 2015, 12, 457-467.	8.2	41
67	Synthesis and Characterization of Graft Copolymers Poly(isoprene- $\langle i \rangle$ g $\langle i \rangle$ -styrene) of High Molecular Weight by a Combination of Anionic Polymerization and Emulsion Polymerization. Industrial & Engineering Chemistry Research, 2015, 54, 1292-1300.	1.8	24
68	Translational diffusion of water inside hydrophobic carbon micropores studied by neutron spectroscopy and molecular dynamics simulation. Physical Review E, 2015, 91, 022124.	0.8	16
69	Microphase separation in thin films of lamellar forming polydisperse di-block copolymers. RSC Advances, 2015, 5, 21336-21348.	1.7	19
70	Correlating high power conversion efficiency of PTB7:PC ₇₁ BM inverted organic solar cells with nanoscale structures. Nanoscale, 2015, 7, 15576-15583.	2.8	54
71	Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells. Journal of Materials Chemistry A, 2015, 3, 15307-15313.	5. 2	20
72	Nanostructure enhanced ionic transport in fullerene reinforced solid polymer electrolytes. Physical Chemistry Chemical Physics, 2015, 17, 8266-8275.	1.3	13

#	Article	IF	CITATIONS
73	Reversible Conversion of Dominant Polarity in Ambipolar Polymer/Graphene Oxide Hybrids. Scientific Reports, 2015, 5, 9446.	1.6	19
74	Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures. Nano Letters, 2015, 15, 3398-3402.	4.5	115
75	Morphological Evolution and Its Impacts on Performance of Polymer Solar Cells. IEEE Transactions on Electron Devices, 2015, 62, 1284-1290.	1.6	13
76	Air-stable solution-processed $\langle i\rangle n < i\rangle$ -channel organic thin film transistors with polymer-enhanced morphology. Applied Physics Letters, 2015, 106, .	1.5	40
77	Adsorption of CO ₂ , CH ₄ , and N ₂ in Micro-Mesoporous Nanographene: A Comparative Study. Journal of Chemical & Che	1.0	24
78	A POM–organic framework anode for Li-ion battery. Journal of Materials Chemistry A, 2015, 3, 22989-22995.	5.2	58
79	Simultaneous spin-coating and solvent annealing: manipulating the active layer morphology to a power conversion efficiency of 9.6% in polymer solar cells. Materials Horizons, 2015, 2, 592-597.	6.4	32
80	Micro-/mesoporous carbons for controlled release of antipyrine and indomethacin. RSC Advances, 2015, 5, 23699-23707.	1.7	12
81	Poly(ethylene oxide)-Assisted Macromolecular Self-Assembly of Lignin in ABS Matrix for Sustainable Composite Applications. ACS Sustainable Chemistry and Engineering, 2015, 3, 3070-3076.	3.2	43
82	Interaction of carbon nanohorns with plants: Uptake and biological effects. Carbon, 2015, 81, 607-619.	5.4	196
83	Hierarchically Superstructured Prussian Blue Analogues: Spontaneous Assembly Synthesis and Applications as Pseudocapacitive Materials. ChemSusChem, 2015, 8, 177-183.	3.6	54
84	Porous Liquids: A Promising Class of Media for Gas Separation. Angewandte Chemie - International Edition, 2015, 54, 932-936.	7.2	191
85	Distinguishing the Importance of Fullerene Phase Separation from Polymer Ordering in the Performance of Low Band Gap Polymer:Bisâ€Fullerene Heterojunctions. Advanced Functional Materials, 2014, 24, 7284-7290.	7.8	19
86	Encapsulation of large dye molecules in hierarchically superstructured metal–organic frameworks. Dalton Transactions, 2014, 43, 17893-17898.	1.6	62
87	Electron beam induced radiation damage in the catalyst layer of a proton exchange membrane fuel cell. Scanning, 2014, 36, 338-346.	0.7	5
88	Characterization of Sulfonated Diels-Alder Poly(phenylene) Membranes for Electrolyte Separators in Vanadium Redox Flow Batteries. Journal of the Electrochemical Society, 2014, 161, A1860-A1868.	1.3	29
89	Nanostructure-Driven Ion Transport in PCBM-Based Polymer Electrolytes. ECS Transactions, 2014, 61, 31-33.	0.3	0
90	Improving performance of TIPS pentacene-based organic thin film transistors with small-molecule additives. Organic Electronics, 2014, 15, 150-155.	1.4	60

#	Article	IF	Citations
91	Cooperative Island Growth of Large-Area Single-Crystal Graphene on Copper Using Chemical Vapor Deposition. ACS Nano, 2014, 8, 5657-5669.	7.3	91
92	The isotopic effects of deuteration on optoelectronic properties of conducting polymers. Nature Communications, 2014, 5, 3180.	5.8	103
93	Interplay of nanoscale domain purity and size on charge transport and recombination dynamics in polymer solar cells. Nanoscale, 2014, 6, 1011-1019.	2.8	69
94	Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nature Communications, 2014, 5, 3005.	5.8	1,155
95	Addressable morphology control of silica structures by manipulating the reagent addition time. RSC Advances, 2014, 4, 2291-2294.	1.7	18
96	Synthesis and Characterization of Comb and Centipede Multigraft Copolymers P <i>n</i> BA- <i>g</i> PS with High Molecular Weight Using Miniemulsion Polymerization. Macromolecules, 2014, 47, 7284-7295.	2.2	30
97	Biocompatibility of Soft-Templated Mesoporous Carbons. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15068-15077.	4.0	31
98	Multi-wall carbon nanotube@zeolite imidazolate framework composite from a nanoscale zinc oxide precursor. Microporous and Mesoporous Materials, 2014, 198, 139-143.	2.2	46
99	Microstructural Control of Charge Transport in Organic Blend Thinâ€Film Transistors. Advanced Functional Materials, 2014, 24, 5969-5976.	7.8	60
100	Studies on Supercapacitor Electrode Material from Activated Lignin-Derived Mesoporous Carbon. Langmuir, 2014, 30, 900-910.	1.6	342
101	Guided crystallization of P3HT in ternary blend solar cell based on P3HT:PCPDTBT:PCBM. Energy and Environmental Science, 2014, 7, 3782-3790.	15.6	60
102	Understanding How Processing Additives Tune the Nanoscale Morphology of High Efficiency Organic Photovoltaic Blends: From Casting Solution to Spunâ€Cast Thin Film. Advanced Functional Materials, 2014, 24, 6647-6657.	7.8	39
103	Synthesis of very small diameter silica nanofibers using sound waves. Chemical Communications, 2014, 50, 7277-7279.	2.2	10
104	Differential Detection of Tumor Cells Using a Combination of Cell Rolling, Multivalent Binding, and Multiple Antibodies. Analytical Chemistry, 2014, 86, 6088-6094.	3.2	44
105	Nanostructured Metal/Carbon Composites from Heterobimetallic Block Copolymers with Controlled Magnetic Properties. Chemistry of Materials, 2014, 26, 3185-3190.	3.2	32
106	Solvent-type-dependent polymorphism and charge transport in a long fused-ring organic semiconductor. Nanoscale, 2014, 6, 449-456.	2.8	59
107	Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates. Nature Communications, 2014, 5, 3705.	5.8	143
108	Universal Formation of Compositionally Graded Bulk Heterojunction for Efficiency Enhancement in Organic Photovoltaics. Advanced Materials, 2014, 26, 3068-3075.	11.1	139

#	Article	IF	CITATIONS
109	TEM of Nanostructured Organic and Hybrid Materials for Photovoltaic and Battery Applications. Microscopy and Microanalysis, 2014, 20, 626-627.	0.2	1
110	Poly(3-hexylthiophene) Molecular Bottlebrushes via Ring-Opening Metathesis Polymerization: Macromolecular Architecture Enhanced Aggregation. ACS Macro Letters, 2013, 2, 761-765.	2.3	48
111	Porous TiO ₂ /C Nanocomposite Shells As a High-Performance Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 6478-6483.	4.0	119
112	Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition. Nature Communications, 2013, 4, 2402.	5.8	47
113	Impact of Carbon Nanotube Exposure to Seeds of Valuable Crops. ACS Applied Materials & Discrete Seeds of Valuable Crops. ACS Applied	4.0	336
114	High-performance organic field-effect transistors with dielectric and active layers printed sequentially by ultrasonic spraying. Journal of Materials Chemistry C, 2013, 1, 4384.	2.7	27
115	Assembly and organization of poly(3-hexylthiophene) brushes and their potential use as novel anode buffer layers for organic photovoltaics. Nanoscale, 2013, 5, 9357.	2.8	23
116	Conjugated Polymer-Mediated Polymorphism of a High Performance, Small-Molecule Organic Semiconductor with Tuned Intermolecular Interactions, Enhanced Long-Range Order, and Charge Transport. Chemistry of Materials, 2013, 25, 4378-4386.	3.2	77
117	Seawater Uranium Sorbents: Preparation from a Mesoporous Copolymer Initiator by Atom†ransfer Radical Polymerization. Angewandte Chemie - International Edition, 2013, 52, 13458-13462.	7.2	222
118	Enhanced charge transport and photovoltaic performance of PBDTTT-C-T/PC70BM solar cells via UV–ozone treatment. Nanoscale, 2013, 5, 10007.	2.8	49
119	Grafting density effects, optoelectrical properties and nano-patterning of poly(para-phenylene) brushes. Journal of Materials Chemistry A, 2013, 1, 13426.	5.2	5
120	Solvent quality-induced nucleation and growth of parallelepiped nanorods in dilute poly(3-hexylthiophene) (P3HT) solution and the impact on the crystalline morphology of solution-cast thin film. CrystEngComm, 2013, 15, 1114-1124.	1.3	51
121	Controlled Synthesis of Mesoporous Carbon Nanostructures via a "Silica-Assisted―Strategy. Nano Letters, 2013, 13, 207-212.	4. 5	248
122	Correlation of polymeric compatibilizer structure to its impact on the morphology and function of P3HT:PCBM bulk heterojunctions. Journal of Materials Chemistry A, 2013, 1, 5309.	5.2	33
123	Crystallization-Driven Thermoreversible Gelation of Coil-Crystalline Cyclic and Linear Diblock Copolypeptoids. ACS Macro Letters, 2013, 2, 436-440.	2.3	53
124	Oxygenâ€Functionalized Few‣ayer Graphene Sheets as Active Catalysts for Oxidative Dehydrogenation Reactions. ChemSusChem, 2013, 6, 840-846.	3.6	61
125	Template-Free Synthesis of Hierarchical Porous Metal–Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 9572-9575.	6.6	200
126	Magnetic alignment of SWCNTs decorated with Fe3O4 to enhance mechanical properties of SC-15 epoxy. AIP Advances, 2013, 3, .	0.6	18

#	Article	IF	Citations
127	Effect of Macromolecular Architecture on the Morphology of Polystyrene–Polyisoprene Block Copolymers. Macromolecules, 2013, 46, 2023-2031.	2.2	27
128	Synthesis of nanowires via helium and neon focused ion beam induced deposition with the gas field ion microscope. Nanotechnology, 2013, 24, 175302.	1.3	25
129	Nanomorphology influence on the light conversion mechanisms in highly efficient diketopyrrolopyrrole based organic solar cells. Organic Electronics, 2013, 14, 326-334.	1.4	21
130	Coating SiO2 Support with TiO2 or ZrO2 and Effects on Structure and CO Oxidation Performance of Pt Catalysts. Catalysts, 2013, 3, 88-103.	1.6	41
131	Morphology study on ternary blend polymer solar cell to achieve improved device performance. Proceedings of SPIE, 2013, , .	0.8	O
132	Switching phase separation mode by varying the hydrophobicity of polymer additives in solution-processed semiconducting small-molecule/polymer blends. Applied Physics Letters, 2013, 103, .	1.5	65
133	Charged Metallopolymers as Universal Precursors for Versatile Cobalt Materials. Angewandte Chemie - International Edition, 2013, 52, 13387-13391.	7.2	65
134	Oxygenâ€Functionalized Fewâ€Layer Graphene Sheets as Active Catalysts for Oxidative Dehydrogenation Reactions. ChemSusChem, 2013, 6, 732-732.	3.6	1
135	The impact of controlled solvent exposure on the morphology, structure and function of bulk heterojunction solar cells. Solar Energy Materials and Solar Cells, 2012, 107, 112-124.	3.0	48
136	Furan substituted diketopyrrolopyrrole and thienylenevinylene based low band gap copolymer for high mobility organic thin film transistors. Journal of Materials Chemistry, 2012, 22, 17284.	6.7	52
137	Well-Defined Polyisoprene-b-Poly(acrylic acid)/Polystyrene-b-Polyisoprene-b-Poly(acrylic acid) Block Copolymers: Synthesis and Their Self-Assembled Hierarchical Structures in Aqueous Media. ACS Macro Letters, 2012, 1, 743-747.	2.3	9
138	Air-flow navigated crystal growth for TIPS pentacene-based organic thin-film transistors. Organic Electronics, 2012, 13, 1819-1826.	1.4	61
139	Galvanic synthesis of bi-modal porous metal nanostructures using aluminum nanoparticle templates. Materials Letters, 2012, 88, 143-147.	1.3	19
140	In Situ Formation of Pyridyl-Functionalized Poly(3-hexylthiophene)s via Quenching of the Grignard Metathesis Polymerization: Toward Ligands for Semiconductor Quantum Dots. Chemistry of Materials, 2012, 24, 4459-4467.	3.2	38
141	Ternary behavior and systematic nanoscale manipulation of domain structures in P3HT/PCBM/P3HT-b-PEO films. Journal of Materials Chemistry, 2012, 22, 13013.	6.7	53
142	Injectable and Biodegradable Nanohybrid Polymers with Simultaneously Enhanced Stiffness and Toughness for Bone Repair. Advanced Functional Materials, 2012, 22, 3181-3190.	7.8	30
143	Assembly and Characterization of Well-Defined High-Molecular-Weight Poly(<i>p</i> prolymer Brushes. Chemistry of Materials, 2011, 23, 4367-4374.	3.2	12
144	High-Performance Field-Effect Transistors Based on Polystyrene- <i>b</i> -Poly(3-hexylthiophene) Diblock Copolymers. ACS Nano, 2011, 5, 3559-3567.	7.3	122

#	Article	IF	CITATIONS
145	Hierarchical Nanomorphologies Promote Exciton Dissociation in Polymer/Fullerene Bulk Heterojunction Solar Cells. Nano Letters, 2011, 11, 3707-3713.	4.5	415
146	Enhanced Performance Consistency in Nanoparticle/TIPS Pentaceneâ€Based Organic Thin Film Transistors. Advanced Functional Materials, 2011, 21, 3617-3623.	7.8	81
147	PSâ€ <i>b</i> à€P3HT Copolymers as P3HT/PCBM Interfacial Compatibilizers for High Efficiency Photovoltaics. Advanced Materials, 2011, 23, 5529-5535.	11.1	110
148	Controlled solution deposition and systematic study of charge-transport anisotropy in single crystal and single-crystal textured TIPS pentacene thin films. Organic Electronics, 2009, 10, 696-703.	1.4	102
149	Lithium Perchlorate-Doped Poly(styrene- <i>b</i> -ethylene oxide- <i>b</i> -styrene) Lamellae-Forming Triblock Copolymer as High Capacitance, Smooth, Thin Film Dielectric. Journal of Physical Chemistry C, 2009, 113, 3903-3908.	1.5	24
150	The influence of side chains on the structures and properties of functionalized pentacenes. Journal of Materials Chemistry, 2008, 18, 1961.	6.7	92
151	Grain-boundary-limited charge transport in solution-processed 6,13 bis(tri-isopropylsilylethynyl) pentacene thin film transistors. Journal of Applied Physics, 2008, 103, .	1.1	106
152	Morphology and molecular orientation of thin-film bis(triisopropylsilylethynyl) pentacene. Journal of Materials Research, 2007, 22, 1701-1709.	1.2	89
153	Solution-processed polycrystalline copper tetrabenzoporphyrin thin-film transistors. Synthetic Metals, 2007, 157, 190-197.	2.1	53
154	Mechanical properties of polyurethane/montmorillonite nanocomposite prepared by melt mixing. Journal of Applied Polymer Science, 2007, 106, 712-721.	1.3	26
155	Microstructure and mechanical properties of polyurethane/nylon/montmorillonite nanocomposite. Fibers and Polymers, 2007, 8, 43-49.	1.1	6
156	Thermally Induced Solid-State Phase Transition of Bis(triisopropylsilylethynyl) Pentacene Crystals. Journal of Physical Chemistry B, 2006, 110, 16397-16403.	1.2	113
157	Thermal and mechanical cracking in bis(triisopropylsilylethnyl) pentacene thin films. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3631-3641.	2.4	58
158	High resolution electron microscopy of ordered polymers and organic molecular crystals: Recent developments and future possibilities. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1749-1778.	2.4	51
159	Role of tunable polymer flexibility in controlling wetting behavior and thermal properties of poly(1,3â \in cyclohexadiene)â \in silica nanocomposites. SPE Polymers, 0, , .	1.4	1