Martin Heeney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/899397/publications.pdf

Version: 2024-02-01

354 papers 29,695 citations

89 h-index ⁵⁸²⁹
161
g-index

375 all docs 375 docs citations

375 times ranked 17562 citing authors

#	Article	IF	CITATIONS
1	Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Materials, 2006, 5, 328-333.	27.5	2,001
2	nâ€₹ype Organic Semiconductors in Organic Electronics. Advanced Materials, 2010, 22, 3876-3892.	21.0	1,077
3	Thieno[3,2- <i>b</i>]thiopheneâ^Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices. Journal of the American Chemical Society, 2011, 133, 3272-3275.	13.7	854
4	Charge Carrier Formation in Polythiophene/Fullerene Blend Films Studied by Transient Absorption Spectroscopy. Journal of the American Chemical Society, 2008, 130, 3030-3042.	13.7	602
5	Indacenodithiophene Semiconducting Polymers for High-Performance, Air-Stable Transistors. Journal of the American Chemical Society, 2010, 132, 11437-11439.	13.7	529
6	Highâ€Performance Ambipolar Diketopyrrolopyrroleâ€Thieno[3,2â€ <i>b</i>)†thiophene Copolymer Fieldâ€Effect Transistors with Balanced Hole and Electron Mobilities. Advanced Materials, 2012, 24, 647-652.	21.0	521
7	Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chemical Society Reviews, 2011, 40, 1185-1199.	38.1	511
8	Recent Progress in Highâ€Mobility Organic Transistors: A Reality Check. Advanced Materials, 2018, 30, e1801079.	21.0	498
9	An Alkylated Indacenodithieno[3,2â€ <i>b</i>]thiopheneâ€Based Nonfullerene Acceptor with High Crystallinity Exhibiting Single Junction Solar Cell Efficiencies Greater than 13% with Low Voltage Losses. Advanced Materials, 2018, 30, 1705209.	21.0	474
10	Molecular origin of high field-effect mobility in an indacenodithiophene–benzothiadiazole copolymer. Nature Communications, 2013, 4, 2238.	12.8	456
11	Fullerenecrystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chemical Science, 2012, 3, 485-492.	7.4	418
12	Semiconducting Thienothiophene Copolymers: Design, Synthesis, Morphology, and Performance in Thinâ€Film Organic Transistors. Advanced Materials, 2009, 21, 1091-1109.	21.0	412
13	Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells. Advanced Functional Materials, 2009, 19, 1173-1179.	14.9	392
14	Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains. Journal of the American Chemical Society, 2011, 133, 15073-15084.	13.7	381
15	X-ray Scattering Study of Thin Films of Poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). Journal of the American Chemical Society, 2007, 129, 3226-3237.	13.7	351
16	Highâ€Performance Polymerâ€Small Molecule Blend Organic Transistors. Advanced Materials, 2009, 21, 1166-1171.	21.0	351
17	2D coherent charge transport in highly orderedÂconducting polymers doped by solid stateÂdiffusion. Nature Materials, 2016, 15, 896-902.	27.5	346
18	Stable Polythiophene Semiconductors Incorporating Thieno [2,3-b] thiophene. Journal of the American Chemical Society, 2005, 127, 1078-1079.	13.7	343

#	Article	lF	Citations
19	Regioregular poly(3-hexyl)selenophene: a low band gap organic hole transporting polymer. Chemical Communications, 2007, , 5061.	4.1	322
20	Critical Role of Side-Chain Attachment Density on the Order and Device Performance of Polythiophenes. Macromolecules, 2007, 40, 7960-7965.	4.8	321
21	A Selenopheneâ€Based Lowâ€Bandgap Donor–Acceptor Polymer Leading to Fast Ambipolar Logic. Advanced Materials, 2012, 24, 1558-1565.	21.0	313
22	Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells. Journal of the American Chemical Society, 2019, 141, 6362-6374.	13.7	307
23	Chargeâ€Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regioregular Poly(3â€hexylthiophene). Advanced Materials, 2009, 21, 1568-1572.	21.0	305
24	High Carrier Mobility Polythiophene Thin Films: Structure Determination by Experiment and Theory. Advanced Materials, 2007, 19, 833-837.	21.0	276
25	The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Progress in Polymer Science, 2013, 38, 1978-1989.	24.7	274
26	Molecular-weight dependence of interchain polaron delocalization and exciton bandwidth in high-mobility conjugated polymers. Physical Review B, 2006, 74, .	3.2	262
27	The Effect of Poly(3â€hexylthiophene) Molecular Weight on Charge Transport and the Performance of Polymer:Fullerene Solar Cells. Advanced Functional Materials, 2008, 18, 2373-2380.	14.9	256
28	A Simple n-Dopant Derived from Diquat Boosts the Efficiency of Organic Solar Cells to 18.3%. ACS Energy Letters, 2020, 5, 3663-3671.	17.4	253
29	Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation. Nano Letters, 2009, 9, 4153-4157.	9.1	243
30	Undoped polythiophene field-effect transistors with mobility of 1cm2Vâ^'1sâ^'1. Applied Physics Letters, 2007, 91, .	3.3	223
31	Solutionâ€Processed Small Moleculeâ€Polymer Blend Organic Thinâ€Film Transistors with Hole Mobility Greater than 5 cm ² /Vs. Advanced Materials, 2012, 24, 2441-2446.	21.0	219
32	Influence of Backbone Fluorination in Regioregular Poly(3-alkyl-4-fluoro)thiophenes. Journal of the American Chemical Society, 2015, 137, 6866-6879.	13.7	211
33	Correlations between Mechanical and Electrical Properties of Polythiophenes. ACS Nano, 2010, 4, 7538-7544.	14.6	210
34	Copper(I) Thiocyanate (CuSCN) Holeâ€Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thinâ€Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells. Advanced Functional Materials, 2017, 27, 1701818.	14.9	208
35	Solution-processed organic transistors based on semiconducting blends. Journal of Materials Chemistry, 2010, 20, 2562.	6.7	201
36	Polymer-Fullerene Miscibility: A Metric for Screening New Materials for High-Performance Organic Solar Cells. Journal of the American Chemical Society, 2012, 134, 15869-15879.	13.7	196

3

#	Article	IF	CITATIONS
37	Systematic Improvement in Charge Carrier Mobility of Air Stable Triarylamine Copolymers. Journal of the American Chemical Society, 2009, 131, 10814-10815.	13.7	186
38	High Mobility Ambipolar Charge Transport in Polyselenophene Conjugated Polymers. Advanced Materials, 2010, 22, 2371-2375.	21.0	178
39	Toward Stretchable Selfâ€Powered Sensors Based on the Thermoelectric Response of PEDOT:PSS/Polyurethane Blends. Advanced Functional Materials, 2018, 28, 1704285.	14.9	171
40	Transient Optoelectronic Analysis of Charge Carrier Losses in a Selenophene/Fullerene Blend Solar Cell. Journal of Physical Chemistry C, 2011, 115, 5947-5957.	3.1	170
41	Low band gap selenophene–diketopyrrolopyrrolepolymers exhibiting high and balanced ambipolar performance in bottom-gate transistors. Chemical Science, 2012, 3, 181-185.	7.4	169
42	Anisotropy of Charge Transport in a Uniaxially Aligned and Chainâ€Extended, Highâ€Mobility, Conjugated Polymer Semiconductor. Advanced Functional Materials, 2011, 21, 932-940.	14.9	166
43	Small Molecule/Polymer Blend Organic Transistors with Hole Mobility Exceeding 13 cm ² V ^{â^1} s ^{â^1} . Advanced Materials, 2016, 28, 7791-7798.	21.0	166
44	Beyond the metal-insulator transition in polymer electrolyte gated polymer field-effect transistors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11834-11837.	7.1	165
45	Indacenodithiophene- <i>co</i> benzothiadiazole Copolymers for High Performance Solar Cells or Transistors via Alkyl Chain Optimization. Macromolecules, 2011, 44, 6649-6652.	4.8	165
46	Controlling the Orientation of Terraced Nanoscale "Ribbons―of a Poly(thiophene) Semiconductor. ACS Nano, 2009, 3, 780-787.	14.6	160
47	On the role of intermixed phases in organic photovoltaic blends. Energy and Environmental Science, 2013, 6, 2756.	30.8	157
48	Thiophene and Selenophene Copolymers Incorporating Fluorinated Phenylene Units in the Main Chain:  Synthesis, Characterization, and Application in Organic Field-Effect Transistors. Chemistry of Materials, 2005, 17, 6567-6578.	6.7	154
49	Studies of Highly Regioregular Poly(3â€hexylselenophene) for Photovoltaic Applications. Advanced Materials, 2007, 19, 4544-4547.	21.0	154
50	Influence of Molecular Weight Distribution on the Gelation of P3HT and Its Impact on the Photovoltaic Performance. Macromolecules, 2009, 42, 4661-4666.	4.8	153
51	Doping Approaches for Organic Semiconductors. Chemical Reviews, 2022, 122, 4420-4492.	47.7	153
52	Electrochemical Doping in Electrolyte-Gated Polymer Transistors. Journal of the American Chemical Society, 2007, 129, 14367-14371.	13.7	145
53	Fused Dithienogermolodithiophene Low Band Gap Polymers for High-Performance Organic Solar Cells without Processing Additives. Journal of the American Chemical Society, 2013, 135, 2040-2043.	13.7	145
54	Activated Singlet Exciton Fission in a Semiconducting Polymer. Journal of the American Chemical Society, 2013, 135, 12747-12754.	13.7	143

#	Article	IF	Citations
55	Significant dependence of morphology and charge carrier mobility on substrate surface chemistry in high performance polythiophene semiconductor films. Applied Physics Letters, 2007, 90, 062117.	3.3	136
56	Roomâ€Temperature Fabrication of Ultrathin Oxide Gate Dielectrics for Lowâ€Voltage Operation of Organic Fieldâ€Effect Transistors. Advanced Materials, 2011, 23, 971-974.	21.0	136
57	Comparison of Methods for Determining the Mechanical Properties of Semiconducting Polymer Films for Stretchable Electronics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8855-8862.	8.0	136
58	Highâ€Efficiency Organic Photovoltaic Cells Based on the Solutionâ€Processable Hole Transporting Interlayer Copper Thiocyanate (CuSCN) as a Replacement for PEDOT:PSS. Advanced Energy Materials, 2015, 5, 1401529.	19.5	133
59	Sequential Deposition of Organic Films with Ecoâ€Compatible Solvents Improves Performance and Enables Over 12%â€Efficiency Nonfullerene Solar Cells. Advanced Materials, 2019, 31, e1808153.	21.0	132
60	Remarkable Enhancement of the Hole Mobility in Several Organic Smallâ€Molecules, Polymers, and Smallâ€Molecule:Polymer Blend Transistors by Simple Admixing of the Lewis Acid pâ€Dopant B(C ₆ F ₅) ₃ . Advanced Science, 2018, 5, 1700290.	11.2	131
61	Acceptor Energy Level Control of Charge Photogeneration in Organic Donor/Acceptor Blends. Journal of the American Chemical Society, 2010, 132, 12919-12926.	13.7	128
62	Silaindacenodithiophene Semiconducting Polymers for Efficient Solar Cells and High-Mobility Ambipolar Transistors. Chemistry of Materials, 2011, 23, 768-770.	6.7	126
63	Use of Xâ€Ray Diffraction, Molecular Simulations, and Spectroscopy to Determine the Molecular Packing in a Polymerâ€Fullerene Bimolecular Crystal. Advanced Materials, 2012, 24, 6071-6079.	21.0	126
64	High Mobility Fieldâ€Effect Transistors with Versatile Processing from a Smallâ€Molecule Organic Semiconductor. Advanced Materials, 2013, 25, 4352-4357.	21.0	126
65	Airâ€Stable and Highâ€Mobility nâ€Channel Organic Transistors Based on Smallâ€Molecule/Polymer Semiconducting Blends. Advanced Materials, 2012, 24, 3205-3211.	21.0	121
66	The Effect of Interfacial Roughness on the Thin Film Morphology and Charge Transport of Highâ€Performance Polythiophenes. Advanced Functional Materials, 2008, 18, 742-750.	14.9	120
67	The Influence of Film Morphology in Highâ€Mobility Smallâ€Molecule:Polymer Blend Organic Transistors. Advanced Functional Materials, 2010, 20, 2330-2337.	14.9	120
68	A Novel Alkylated Indacenodithieno[3,2â€b]thiopheneâ€Based Polymer for Highâ€Performance Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 3922-3927.	21.0	117
69	Influence of Molecular Design on the Field-Effect Transistor Characteristics of Terthiophene Polymers. Chemistry of Materials, 2005, 17, 1381-1385.	6.7	116
70	Effect of Systematically Tuning Conjugated Donor Polymer Lowest Unoccupied Molecular Orbital Levels via Cyano Substitution on Organic Photovoltaic Device Performance. Chemistry of Materials, 2016, 28, 5110-5120.	6.7	115
71	Molecular Basis of Mesophase Ordering in a Thiophene-Based Copolymer. Macromolecules, 2008, 41, 5709-5715.	4.8	114
72	Microwave-assisted synthesis of polythiophenes via the Stille coupling. Synthetic Metals, 2005, 148, 195-198.	3.9	113

#	Article	IF	Citations
73	Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells. Polymers, 2016, 8, 14.	4.5	111
74	Organic bulk heterojunction solar cells using poly(2,5-bis(3-tetradecyllthiophen-2-yl)thieno[3,2,-b]thiophene). Applied Physics Letters, 2008, 92, .	3.3	110
75	Doping of Conjugated Polythiophenes with Alkyl Silanes. Advanced Functional Materials, 2009, 19, 1906-1911.	14.9	107
76	Polaron Localization at Interfaces in Highâ€Mobility Microcrystalline Conjugated Polymers. Advanced Materials, 2009, 21, 3759-3763.	21.0	105
77	Thermal and Structural Characteristics of Oligo(3-hexylthiophene)s (3HT) _{<i>nn</i> = 4–36. Journal of the American Chemical Society, 2013, 135, 13699-13709.}	13.7	105
78	Alkylated Selenophene-Based Ladder-Type Monomers via a Facile Route for High-Performance Thin-Film Transistor Applications. Journal of the American Chemical Society, 2017, 139, 8552-8561.	13.7	105
79	Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers. Macromolecules, 2014, 47, 7151-7157.	4.8	102
80	Highly Efficient Patterning of Organic Singleâ€Crystal Transistors from the Solution Phase. Advanced Materials, 2008, 20, 4044-4048.	21.0	100
81	Polymerisable liquid crystalline organic semiconductors and their fabrication in organic field effect transistors. Journal of Materials Chemistry, 2003, 13, 2436.	6.7	99
82	Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells. Advanced Energy Materials, 2012, 2, 1208-1217.	19.5	97
83	Influence of Side-Chain Regiochemistry on the Transistor Performance of High-Mobility, All-Donor Polymers. Journal of the American Chemical Society, 2014, 136, 15154-15157.	13.7	97
84	Lamination Method for the Study of Interfaces in Polymeric Thin Film Transistors. Journal of the American Chemical Society, 2004, 126, 13928-13929.	13.7	96
85	Effect of the End Group of Regioregular Poly(3-hexylthiophene) Polymers on the Performance of Polymer/Fullerene Solar Cells. Journal of Physical Chemistry C, 2007, 111, 8137-8141.	3.1	96
86	Ambipolar Field-Effect Transistors Based on Solution-Processable Blends of Thieno [2,3-b] thiophene Terthiophene Polymer and Methanofullerenes. Advanced Materials, 2005, 17, 2608-2612.	21.0	93
87	Understanding the Influence of Morphology on Poly(3-hexylselenothiophene):PCBM Solar Cells. Macromolecules, 2010, 43, 1169-1174.	4.8	92
88	Photovoltaic and field effect transistor performance of selenophene and thiophene diketopyrrolopyrrole co-polymers with dithienothiophene. Journal of Materials Chemistry, 2012, 22, 12817.	6.7	92
89	A low band gap co-polymer of dithienogermole and 2,1,3-benzothiadiazole by Suzuki polycondensation and its application in transistor and photovoltaic cells. Journal of Materials Chemistry, 2011, 21, 16257.	6.7	91
90	Influence of Phase Segregation on Recombination Dynamics in Organic Bulkâ€Heterojunction Solar Cells. Advanced Functional Materials, 2011, 21, 1687-1692.	14.9	90

#	Article	IF	Citations
91	Natures of optical absorption transitions and excitation energy dependent photostability of diketopyrrolopyrrole (DPP)-based photovoltaic copolymers. Energy and Environmental Science, 2015, 8, 3222-3232.	30.8	90
92	Polyterthiophenes as Donors for Polymer Solar Cells. Advanced Functional Materials, 2007, 17, 1371-1376.	14.9	89
93	Enabling high-mobility, ambipolar charge-transport in a DPP-benzotriazole copolymer by side-chain engineering. Chemical Science, 2015, 6, 6949-6960.	7.4	89
94	Cyano substituted benzothiadiazole: a novel acceptor inducing n-type behaviour in conjugated polymers. Journal of Materials Chemistry C, 2015, 3, 265-275.	5. 5	89
95	"Fibonacci's Route―to Regioregular Oligo(3-hexylthiophene)s. Journal of the American Chemical Society, 2013, 135, 13695-13698.	13.7	86
96	Relative importance of polaron activation and disorder on charge transport in high-mobility conjugated polymer field-effect transistors. Physical Review B, 2007, 76, .	3.2	84
97	Influence of the heteroatom on the optoelectronic properties and transistor performance of soluble thiophene-, selenophene- and tellurophene–vinylene copolymers. Chemical Science, 2016, 7, 1093-1099.	7.4	84
98	Tetradiketone macrocycle for divalent aluminium ion batteries. Nature Communications, 2021, 12, 2386.	12.8	84
99	Continuous Synthesis of Deviceâ€Grade Semiconducting Polymers in Dropletâ€Based Microreactors. Advanced Functional Materials, 2013, 23, 2123-2129.	14.9	83
100	Alkylidene Fluorene Liquid Crystalline Semiconducting Polymers for Organic Field Effect Transistor Devices. Macromolecules, 2004, 37, 5250-5256.	4.8	80
101	Structural characterisation of a red phthalocyanine. Chemical Communications, 2003, , 2064.	4.1	78
102	Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors. Advanced Functional Materials, 2013, 23, 2091-2098.	14.9	77
103	Domain Compositions and Fullerene Aggregation Govern Charge Photogeneration in Polymer/Fullerene Solar Cells. Advanced Energy Materials, 2014, 4, 1400116.	19.5	77
104	Carboraneâ€Induced Excimer Emission of Severely Twisted Bisâ€∢i>oàê€Carboranyl Chrysene. Angewandte Chemie - International Edition, 2018, 57, 10640-10645.	13.8	77
105	Solidâ€State Supramolecular Organization of Polythiophene Chains Containing Thienothiophene Units. Advanced Materials, 2009, 21, 1193-1198.	21.0	76
106	Microstructural Origin of High Mobility in Highâ€Performance Poly(thienoâ€ŧhiophene) Thinâ€Film Transistors. Advanced Materials, 2010, 22, 697-701.	21.0	75
107	A Close Look at Charge Generation in Polymer:Fullerene Blends with Microstructure Control. Journal of the American Chemical Society, 2015, 137, 2908-2918.	13.7	7 5
108	Entanglements in marginal solutions: a means of tuning pre-aggregation of conjugated polymers with positive implications for charge transport. Journal of Materials Chemistry C, 2015, 3, 7394-7404.	5. 5	75

#	Article	IF	CITATIONS
109	High-performance organic integrated circuits based on solution processable polymer-small molecule blends. Applied Physics Letters, 2008, 93, .	3.3	74
110	The phase behavior of a polymerâ€fullerene bulk heterojunction system that contains bimolecular crystals. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 499-503.	2.1	71
111	Material Crystallinity as a Determinant of Triplet Dynamics and Oxygen Quenching in Donor Polymers for Organic Photovoltaic Devices. Advanced Functional Materials, 2014, 24, 1474-1482.	14.9	71
112	Effects of a Heavy Atom on Molecular Order and Morphology in Conjugated Polymer:Fullerene Photovoltaic Blend Thin Films and Devices. ACS Nano, 2012, 6, 9646-9656.	14.6	70
113	Facile infiltration of semiconducting polymer into mesoporous electrodes for hybrid solar cells. Energy and Environmental Science, 2011, 4, 3051.	30.8	68
114	Influence of Ion Induced Local Coulomb Field and Polarity on Charge Generation and Efficiency in Poly(3â∈Hexylthiophene)â∈Based Solidâ∈State Dyeâ∈Sensitized Solar Cells. Advanced Functional Materials, 2011, 2571-2579.	, 14.9	68
115	Thiophene fluorination to enhance photovoltaic performance in low band gap donor–acceptor polymers. Chemical Communications, 2012, 48, 11130.	4.1	68
116	Inâ€Plane Liquid Crystalline Texture of Highâ€Performance Thienothiophene Copolymer Thin Films. Advanced Functional Materials, 2010, 20, 4098-4106.	14.9	67
117	Photoinduced Carrier Generation and Decay Dynamics in Intercalated and Non-intercalated Polymer:Fullerene Bulk Heterojunctions. ACS Nano, 2011, 5, 5635-5646.	14.6	67
118	Alkyl Chain Extension as a Route to Novel Thieno[3,2- <i>b</i>) Ithiophene Flanked Diketopyrrolopyrrole Polymers for Use in Organic Solar Cells and Field Effect Transistors. Macromolecules, 2013, 46, 5961-5967.	4.8	67
119	Effects of the surface roughness of plastic-compatible inorganic dielectrics on polymeric thin film transistors. Applied Physics Letters, 2007, 90, 233508.	3.3	66
120	Thioalkyl-Substituted Benzothiadiazole Acceptors: Copolymerization with Carbazole Affords Polymers with Large Stokes Shifts and High Solar Cell Voltages. Macromolecules, 2014, 47, 2279-2288.	4.8	66
121	High mobility p-channel organic field effect transistors on flexible substrates using a polymer-small molecule blend. Synthetic Metals, 2009, 159, 2365-2367.	3.9	65
122	Tail state limited photocurrent collection of thick photoactive layers in organic solar cells. Nature Communications, 2019, 10, 5159.	12.8	65
123	Charge photogeneration in polythiophene–perylene diimide blend films. Chemical Communications, 2009, , 5445.	4.1	64
124	Addition of the Lewis Acid Zn(C $<$ sub $>6<$ /sub $>F<$ sub $>5<$ /sub $>)<$ sub $>2<$ /sub $>$ Enables Organic Transistors with a Maximum Hole Mobility in Excess of 20 cm $<$ sup $>2<$ /sup $>$ V $<$ sup $>$ â $^1<$ fsup $>$ s $<$ sup $>$ â $^1<$ fsup $>$. Advanced Materials, 2019, 31, e1900871.	21.0	64
125	Electronic Structure and Charge-Transport Properties of Polythiophene Chains Containing Thienothiophene Units: A Joint Experimental and Theoretical Study. Chemistry of Materials, 2007, 19, 4949-4956.	6.7	63
126	The Impact of Molecular pâ€Doping on Charge Transport in Highâ€Mobility Smallâ€Molecule/Polymer Blend Organic Transistors. Advanced Electronic Materials, 2018, 4, 1700464.	5.1	63

#	Article	IF	CITATIONS
127	Importance of Spin-Orbit Interaction for the Electron Spin Relaxation in Organic Semiconductors. Physical Review Letters, 2013, 110, 216602.	7.8	62
128	Hexyl-substituted oligothiophenes with a central tetrafluorophenylene unit: crystal engineering of planar structures for p-type organic semiconductors. Chemical Communications, 2005, , 1465.	4.1	61
129	Local Charge Trapping in Conjugated Polymers Resolved by Scanning Kelvin Probe Microscopy. Physical Review Letters, 2009, 103, 256803.	7.8	61
130	Phthalocyaninodehydroannulenes. Chemistry - A European Journal, 2000, 6, 3958-3967.	3.3	59
131	Influence of the Electron Deficient Coâ€Monomer on the Optoelectronic Properties and Photovoltaic Performance of Dithienogermoleâ€based Coâ€Polymers. Advanced Functional Materials, 2014, 24, 678-687.	14.9	59
132	Using Molecular Design to Increase Hole Transport: Backbone Fluorination in the Benchmark Material		

#	Article	IF	CITATIONS
145	Radical ion pair mediated triplet formation in polymer–fullerene blend films. Chemical Communications, 2006, , 3939-3941.	4.1	51
146	Structural and Electronic Effects of 1,3,4-Thiadiazole Units Incorporated into Polythiophene Chains. Macromolecules, 2007, 40, 6585-6593.	4.8	50
147	Elucidating the role of hyperfine interactions on organic magnetoresistance using deuterated aluminium tris(8-hydroxyquinoline). Physical Review B, 2009, 80, .	3.2	50
148	An alignable fluorene thienothiophene copolymer with deep-blue electroluminescent emission at 410Ânm. Chemical Communications, 2008, , 1079.	4.1	49
149	Synthesis, Characterization, and Field Effect Transistor Properties of Regioregular Poly(3-alkyl-2,5-selenylenevinylene). Macromolecules, 2011, 44, 5194-5199.	4.8	49
150	Conjugated Copolymers of Vinylene Flanked Naphthalene Diimide. Macromolecules, 2016, 49, 6384-6393.	4.8	49
151	Alternating 5,5-Dimethylcyclopentadiene and Diketopyrrolopyrrole Copolymer Prepared at Room Temperature for High Performance Organic Thin-Film Transistors. Journal of the American Chemical Society, 2017, 139, 8094-8097.	13.7	49
152	Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors. Nature Communications, 2019, 10, 4475.	12.8	49
153	A Systematic Approach to the Design Optimization of Lightâ€Absorbing Indenofluorene Polymers for Organic Photovoltaics. Advanced Energy Materials, 2012, 2, 260-265.	19.5	48
154	The influence of microstructure on charge separation dynamics in organic bulk heterojunction materials for solar cell applications. Journal of Materials Chemistry A, 2014, 2, 6218-6230.	10.3	48
155	Post-polymerisation functionalisation of conjugated polymer backbones and its application in multi-functional emissive nanoparticles. Nature Communications, 2018, 9, 3237.	12.8	48
156	Influence of source-drain electric field on mobility and charge transport in organic field-effect transistors. Journal of Applied Physics, 2007, 102, .	2.5	47
157	Solid‧tate Processing of Organic Semiconductors. Advanced Materials, 2010, 22, 3942-3947.	21.0	46
158	Percolation behaviour in high mobility p-channel polymer/small-molecule blend organic field-effect transistors. Organic Electronics, 2011, 12, 143-147.	2.6	46
159	Germanium―and Silicon‧ubstituted Donor–Acceptor Type Copolymers: Effect of the Bridging Heteroatom on Molecular Packing and Photovoltaic Device Performance. Advanced Energy Materials, 2014, 4, 1400527.	19.5	46
160	Increased Exciton Dipole Moment Translates into Charge-Transfer Excitons in Thiophene-Fluorinated Low-Bandgap Polymers for Organic Photovoltaic Applications. Chemistry of Materials, 2015, 27, 7934-7944.	6.7	46
161	Impact of backbone fluorination on nanoscale morphology and excitonic coupling in polythiophenes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5113-5118.	7.1	46
162	Direct Correlation of Charge Transfer Absorption with Molecular Donor:Acceptor Interfacial Area via Photothermal Deflection Spectroscopy. Journal of the American Chemical Society, 2015, 137, 5256-5259.	13.7	45

#	Article	IF	Citations
163	Bulk Heterojunction Materials Composed of Poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2- <i>b</i>)thiophene): Ultrafast Electron Transfer and Carrier Recombination. Journal of Physical Chemistry C, 2008, 112, 7853-7857.	3.1	44
164	The influence of polymer purification on the efficiency of poly(3-hexylthiophene):fullerene organic solar cells. Scientific Reports, 2016, 6, 23651.	3.3	44
165	Comparative Optoelectronic Study between Copolymers of Peripherally Alkylated Dithienosilole and Dithienogermole. Macromolecules, 2012, 45, 735-742.	4.8	42
166	Ink-jet printed p-type polymer electronics based on liquid-crystalline polymer semiconductors. Journal of Materials Chemistry, 2010, 20, 1927.	6.7	41
167	Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers. Journal of the American Chemical Society, 2015, 137, 10383-10390.	13.7	41
168	Synthesis and Characterization of Fused Pyrrolo[3,2- <i>d</i> :4,5- <i>d′</i>]bisthiazole-Containing Polymers. Organic Letters, 2010, 12, 5478-5481.	4.6	40
169	Highly-efficient semi-transparent organic solar cells utilising non-fullerene acceptors with optimised multilayer MoO ₃ /Ag/MoO ₃ electrodes. Materials Chemistry Frontiers, 2019, 3, 450-455.	5.9	40
170	Impact of the Gate Dielectric on Contact Resistance in Highâ€Mobility Organic Transistors. Advanced Electronic Materials, 2019, 5, 1800723.	5.1	40
171	Origin of the different transport properties of electron and hole polarons in an ambipolar polyselenophene-based conjugated polymer. Physical Review B, 2011, 84, .	3.2	39
172	Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells. Journal of Materials Chemistry A, 2020, 8, 1164-1175.	10.3	39
173	Infrared Organic Photodetectors Employing Ultralow Bandgap Polymer and Nonâ€Fullerene Acceptors for Biometric Monitoring. Small, 2022, 18, e2200580.	10.0	39
174	Oriented Liquid Crystalline Polymer Semiconductor Films with Large Ordered Domains. ACS Applied Materials & Domains. ACS Applied Mat	8.0	38
175	Pentafluorobenzene end-group as a versatile handle for para fluoro "click―functionalization of polythiophenes. Chemical Science, 2017, 8, 2215-2225.	7.4	38
176	Polymer chain/nanocrystal ordering in thin films of regioregular poly(3-hexylthiophene) and blends with a soluble fullerene. Soft Matter, 2007, 3, 117-121.	2.7	37
177	Influence of polymer ionization potential on the open-circuit voltage of hybrid polymer/TiO2 solar cells. Applied Physics Letters, 2008, 92, 053308.	3.3	37
178	Photoinduced Charge Carrier Generation in Blends of Poly(Thienothiophene) Derivatives and [6,6]-Phenyl-C61-butyric Acid Methyl Ester: Phase Segregation versus Intercalation. Journal of Physical Chemistry C, 2010, 114, 15116-15120.	3.1	37
179	A gentle introduction to the noble art of flow chemistry. Materials Horizons, 2014, 1, 373.	12.2	37
180	Thermoelectric Materials: A Brief Historical Survey from Metal Junctions and Inorganic Semiconductors to Organic Polymers. Israel Journal of Chemistry, 2014, 54, 534-552.	2.3	37

#	Article	IF	Citations
181	Hall Effect in Polycrystalline Organic Semiconductors: The Effect of Grain Boundaries. Advanced Functional Materials, 2020, 30, 1903617.	14.9	37
182	Near Infrared Absorbing Soluble Poly(cyclopenta[2,1-b:3,4-b′]dithiophen-4-one)vinylene Polymers Exhibiting High Hole and Electron Mobilities in Ambient Air. Chemistry of Materials, 2013, 25, 59-68.	6.7	35
183	Introducing a Nonvolatile Nâ€Type Dopant Drastically Improves Electron Transport in Polymer and Smallâ€Molecule Organic Transistors. Advanced Functional Materials, 2019, 29, 1902784.	14.9	35
184	Solutionâ€Processed In ₂ O ₃ /ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantumâ€Dot Solar Cells. Solar Rrl, 2018, 2, 1800076.	5. 8	34
185	Oneâ€Step Sixfold Cyanation of Benzothiadiazole Acceptor Units for Airâ€Stable Highâ€Performance nâ€Type Organic Fieldâ€Effect Transistors. Angewandte Chemie - International Edition, 2021, 60, 5970-5977.	13.8	34
186	High mobility ambipolar charge transport in a cross-linked reactive mesogen at room temperature. Applied Physics Letters, 2005, 87, 172110.	3.3	33
187	Novel BODIPY-based conjugated polymers donors for organic photovoltaic applications. RSC Advances, 2013, 3, 10221.	3.6	33
188	Synthetic Aspects of Organic Semiconductors. MRS Bulletin, 2008, 33, 698-705.	3.5	32
189	Systematic Tuning of 2,1,3-Benzothiadiazole Acceptor Strength by Monofunctionalization with Alkylamine, Thioalkyl, or Alkoxy Groups in Carbazole Donor–Acceptor Polymers. Macromolecules, 2017, 50, 2736-2746.	4.8	32
190	Anion-induced N-doping of naphthalenediimide polymer semiconductor in organic thin-film transistors. Npj Flexible Electronics, $2018,2,.$	10.7	32
191	Diseleno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]selenopheneâ€Containing Highâ€Mobility Conjugated Polymer for Grieldâ€Effect Transistors. Advanced Science, 2019, 6, 1900245.	Organic 17.2	32
192	Low band gap dithienogermolodithiophene copolymers with tunable acceptors and side-chains for organic solar cells. Journal of Materials Chemistry A, 2013, 1, 14973.	10.3	31
193	Investigation of Radical and Cationic Crossâ€Linking in Highâ€Efficiency, Low Band Gap Solar Cell Polymers. Advanced Energy Materials, 2015, 5, 1401228.	19.5	31
194	Crucial Role of Fluorine in Fully Alkylated Ladder-Type Carbazole-Based Nonfullerene Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9555-9562.	8.0	31
195	Solution processed low-voltage organic transistors and complementary inverters. Applied Physics Letters, 2009, 95, .	3.3	30
196	Separate charge transport pathways determined by the time of flight method in bimodal polytriarylamine. Journal of Applied Physics, 2009, 105, .	2.5	29
197	Influence of Backbone Curvature on the Organic Electrochemical Transistor Performance of Glycolated Donor–Acceptor Conjugated Polymers. Angewandte Chemie - International Edition, 2021, 60, 19679-19684.	13.8	29
198	Synthesis of a Luminescent Arsolo [2,3-d:5,4-d′] bis(thiazole) Building Block and Comparison to Its Phosphole Analogue. Organometallics, 2017, 36, 2632-2636.	2.3	29

#	Article	IF	Citations
199	Octaalkyl- and Octaalkoxy-2,3-naphthalocyanines. , 1997, 01, 77-86.		28
200	Carboraneâ€Induced Excimer Emission of Severely Twisted Bisâ€ <i>o</i> a€€Carboranyl Chrysene. Angewandte Chemie, 2018, 130, 10800-10805.	2.0	28
201	Combinatorial screening of the effect of temperature on the microstructure and mobility of a high performance polythiophene semiconductor. Applied Physics Letters, 2007, 90, 012112.	3.3	27
202	Core Fluorination Enhances Solubility and Ambient Stability of an IDTâ∈Based nâ∈Type Semiconductor in Transistor Devices. Advanced Functional Materials, 2020, 30, 2000325.	14.9	27
203	Optical Acetone Vapor Sensors Based on Chiral Nematic Liquid Crystals and Reactive Chiral Dopants. Advanced Optical Materials, 2016, 4, 592-596.	7.3	26
204	Cyano substituted benzotriazole based polymers for use in organic solar cells. Journal of Materials Chemistry A, 2017, 5, 6465-6470.	10.3	26
205	Fused Cyclopentadithienothiophene Acceptor Enables Ultrahigh Shortâ€Circuit Current and High Efficiency >11% in Asâ€Cast Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1904956.	14.9	26
206	Visualizing the Vertical Energetic Landscape in Organic Photovoltaics. Joule, 2019, 3, 2513-2534.	24.0	25
207	A comparison between dithienosilole and dithienogermole donor–acceptor type co-polymers for organic bulk heterojunction photovoltaic devices. Journal of Materials Chemistry, 2012, 22, 9975.	6.7	24
208	<i>In-situ</i> monitoring of molecular vibrations of two organic semiconductors in photovoltaic blends and their impact on thin film morphology. Applied Physics Letters, 2013, 102, .	3.3	24
209	The impact of thienothiophene isomeric structures on the optoelectronic properties and photovoltaic performance in quinoxaline based donor–acceptor copolymers. Polymer Chemistry, 2015, 6, 3098-3109.	3.9	24
210	Hybrid complementary circuits based on <i>p</i> -channel organic and <i>n</i> -channel metal oxide transistors with balanced carrier mobilities of up to 10 cm2/Vs. Applied Physics Letters, 2016, 109, .	3.3	24
211	A novel low-bandgap pyridazine thiadiazole-based conjugated polymer with deep molecular orbital levels. Polymer Chemistry, 2020, 11, 581-585.	3.9	24
212	Predicting the photocurrent–composition dependence in organic solar cells. Energy and Environmental Science, 2021, 14, 986-994.	30.8	24
213	A comprehensive study of the effect of reactive end groups on the charge carrier transport within polymerized and nonpolymerized liquid crystals. Journal of Applied Physics, 2007, 101, 023713.	2.5	23
214	Alternating Copolymers Incorporating Dithienogemolodithiophene for Field-Effect Transistor Applications. Macromolecules, 2014, 47, 8602-8610.	4.8	23
215	Polythiophenes with vinylene linked <i>ortho</i> , <i>meta</i> and <i>para</i> -carborane sidechains. Polymer Chemistry, 2014, 5, 6190-6199.	3.9	23
216	Classification of semiconducting polymeric mesophases to optimize device postprocessing. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1641-1653.	2.1	23

#	Article	IF	Citations
217	Synthesis of low band gap polymers based on pyrrolo[3,2-d:4,5-d′]bisthiazole (PBTz) and thienylenevinylene (TV) for organic thin-film transistors (OTFTs). Journal of Materials Chemistry C, 2017, 5, 2247-2258.	5. 5	23
218	A Capping Methodology for the Synthesis of Lower $\hat{1}/4$ -Oxo-phthalocyaninato Silicon Oligomers. Journal of the American Chemical Society, 2005, 127, 16382-16383.	13.7	22
219	Hexylâ€6ubstituted Oligoselenophenes with Central Tetrafluorophenylene Units: Synthesis, Characterisation and Application in Organic Field Effect Transistors. Macromolecular Rapid Communications, 2008, 29, 1839-1843.	3.9	22
220	Electrooptical Spectroscopy of Uniaxially Aligned Polythiophene Films in Field-Effect Transistors. Chemistry of Materials, 2013, 25, 2075-2082.	6.7	22
221	The effect of phase morphology on the nature of long-lived charges in semiconductor polymer:fullerene systems. Journal of Materials Chemistry C, 2015, 3, 3722-3729.	5.5	22
222	α,β-Unsubstituted <i>meso</i> -positioning thienyl BODIPY: a promising electron deficient building block for the development of near infrared (NIR) p-type donor–acceptor (D–A) conjugated polymers. Journal of Materials Chemistry C, 2018, 6, 4030-4040.	5.5	22
223	Heavy-atom effects on intramolecular singlet fission in a conjugated polymer. Journal of Chemical Physics, 2019, 151, 044902.	3.0	22
224	Incorporation of benzocarborane into conjugated polymer systems: synthesis, characterisation and optoelectronic properties. Journal of Materials Chemistry C, 2014, 2, 232-239.	5.5	21
225	Controlled synthesis of conjugated random copolymers in a droplet-based microreactor. Materials Horizons, 2014, 1, 214-218.	12.2	21
226	Reconciling models of interfacial state kinetics and device performance in organic solar cells: impact of the energy offsets on the power conversion efficiency. Energy and Environmental Science, 2022, 15, 1256-1270.	30.8	21
227	Electrical Properties of Reactive Liquid Crystal Semiconductors. Japanese Journal of Applied Physics, 2008, 47, 488-491.	1.5	20
228	Importance of intramolecular electron spin relaxation in small molecule semiconductors. Physical Review B, 2011, 84, .	3.2	20
229	Realâ€Time Investigation of Intercalation and Structure Evolution in Printed Polymer:Fullerene Bulk Heterojunction Thin Films. Advanced Energy Materials, 2016, 6, 1502025.	19.5	20
230	A diphthalocyanino-dehydro [12] annulene. Chemical Communications, 2000, , 969-970.	4.1	19
231	Hybrid Polymer Solar Cells from Zinc Oxide and Poly(3-hexylselenophene). Journal of Physical Chemistry C, 2011, 115, 18901-18908.	3.1	19
232	Benzocarborano[2,1- <i>b</i> :3,4- <i>b</i> ê²]dithiophene Containing Conjugated Polymers: Synthesis, Characterization, and Optoelectronic Properties. Macromolecules, 2014, 47, 89-96.	4.8	19
233	Diselenogermole as a novel donor monomer for low band gap polymers. Journal of Materials Chemistry A, 2015, 3, 1986-1994.	10.3	19
234	Copper (I) Selenocyanate (CuSeCN) as a Novel Holeâ€Transport Layer for Transistors, Organic Solar Cells, and Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1707319.	14.9	19

#	Article	IF	CITATIONS
235	Impact of p-type doping on charge transport in blade-coated small-molecule:polymer blend transistors. Journal of Materials Chemistry C, 2020, 8, 15368-15376.	5.5	19
236	A Triâ€Channel Oxide Transistor Concept for the Rapid Detection of Biomolecules Including the SARSâ€CoVâ€2 Spike Protein. Advanced Materials, 2022, 34, e2104608.	21.0	19
237	Direct measurement of carrier drift velocity and mobility in a polymer field-effect transistor. Applied Physics Letters, 2006, 89, 242104.	3.3	18
238	Relationship between Film Morphology, Optical, and Conductive Properties of Poly(thienothiophene): [6,6]-Phenyl C-61-Butyric Acid Methyl Ester Bulk Heterojunctions. Journal of Physical Chemistry C, 2008, 112, 15973-15979.	3.1	18
239	Organic field-effect transistors of poly(2,5-bis(3-dodecylthiophen-2-yl)thieno[2,3-b]thiophene) deposited on five different silane self-assembled monolayers. Chemical Communications, 2008, , 871-873.	4.1	18
240	Rapid flow-based synthesis of poly(3-hexylthiophene) using 2-methyltetrahydrofuran as a bio-derived reaction solvent. European Polymer Journal, 2016, 80, 240-246.	5. 4	18
241	Alkylated indacenodithieno[3,2- <i>b</i>)thiophene-based all donor ladder-type conjugated polymers for organic thin film transistors. Journal of Materials Chemistry C, 2018, 6, 2004-2009.	5 . 5	18
242	Naphthalene diimide based near-infrared luminogens with aggregation-induced emission characteristics for biological imaging and high mobility ambipolar transistors. Science China Chemistry, 2020, 63, 1198-1207.	8.2	18
243	Effects of Thermal Annealing Upon the Nanomorphology of Poly(3â€hexylselenophene)â€PCBM Blends. Macromolecular Rapid Communications, 2011, 32, 1454-1460.	3.9	17
244	Fused pyrrolo[3,2-d:4,5-d′]bisthiazole-containing polymers for using in high-performance organic bulk heterojunction solar cells. Solar Energy Materials and Solar Cells, 2012, 96, 112-116.	6.2	17
245	N-Doping improves charge transport and morphology in the organic non-fullerene acceptor O-IDTBR. Journal of Materials Chemistry C, 2021, 9, 4486-4495.	5 . 5	17
246	The Influence of Backbone Fluorination on the Dielectric Constant of Conjugated Polythiophenes. Advanced Electronic Materials, 2018, 4, 1700375.	5.1	17
247	A study of the effects metal residues in poly(9,9-dioctylfluorene) have on field-effect transistor device characteristics. Synthetic Metals, 2007, 157, 872-875.	3.9	16
248	A general mechanism for controlling thin film structures in all-conjugated block copolymer:fullerene blends. Journal of Materials Chemistry A, 2014, 2, 14711-14719.	10.3	16
249	Chalcogen Bridged Thieno- and Selenopheno[2,3- <i>d</i> :5,4- <i>d</i> ?′]bisthiazole and Their Diketopyrrolopyrrole Based Low-Bandgap Copolymers. Macromolecules, 2018, 51, 6076-6084.	4.8	16
250	A versatile star-shaped organic semiconductor based on benzodithiophene and diketopyrrolopyrrole. Journal of Materials Chemistry C, 2019, 7, 6622-6629.	5.5	16
251	High-Performance Unipolar n-Type Conjugated Polymers Enabled by Highly Electron-Deficient Building Blocks Containing F and CN Groups. Macromolecules, 2022, 55, 4429-4440.	4.8	16
252	Control of polythiophene film microstructure and charge carrier dynamics through crystallization temperature. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 700-707.	2.1	15

#	Article	IF	CITATIONS
253	An Airâ€Stable Semiconducting Polymer Containing Dithieno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>)arsole. Angewa Chemie, 2016, 128, 7264-7267.	ndte 2.0	15
254	Effect of a heavy heteroatom on triplet formation and interactions in single conjugated polymer molecules and aggregates. Physical Chemistry Chemical Physics, 2017, 19, 28239-28248.	2.8	15
255	Terahertz short-range mobilities in neat and intermixed regions of polymer:fullerene blends with controlled phase morphology. Journal of Materials Chemistry A, 2018, 6, 22301-22309.	10.3	15
256	Tunable Control of the Hydrophilicity and Wettability of Conjugated Polymers by a Postpolymerization Modification Approach. Macromolecular Bioscience, 2020, 20, e2000087.	4.1	15
257	Understanding Charge Transport in Highâ€Mobility <i>pâ€</i> Doped Multicomponent Blend Organic Transistors. Advanced Electronic Materials, 2020, 6, 2000539.	5.1	15
258	Photoconductivity anisotropy study in uniaxially aligned polymer based planar photodiodes. Organic Electronics, 2012, 13, 36-42.	2.6	14
259	Vinylene-Linked Oligothiophene–Difluorobenzothiadiazole Copolymer for Transistor Applications. ACS Applied Materials & Interfaces, 2016, 8, 31154-31165.	8.0	14
260	Measurement of Cohesion and Adhesion of Semiconducting Polymers by Scratch Testing: Effect of Side-Chain Length and Degree of Polymerization. ACS Macro Letters, 2018, 7, 1003-1009.	4.8	14
261	Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]arsole-containing conjugated polymers in organic photovoltaic devices. Dalton Transactions, 2019, 48, 6676-6679.	3.3	13
262	Ring fusion in tetrathienylethene cored perylene diimide tetramers affords acceptors with strong and broad absorption in the near-UV to visible region. Journal of Materials Chemistry C, 2020, 8, 17237-17244.	5.5	13
263	Correlating the Structural and Photophysical Properties of <i>Ortho</i> , <i>Meta</i> , and <i>Para</i> êCarboranyl–Anthracene Dyads. Advanced Electronic Materials, 2020, 6, 2000312.	5.1	13
264	Carrierâ€density dependence of the hole mobility in doped and undoped regioregular poly(3â€hexylthiophene). Physica Status Solidi (B): Basic Research, 2012, 249, 138-141.	1.5	12
265	Fused Ring Cyclopentadithienothiophenes as Novel Building Blocks for High Field Effect Mobility Conjugated Polymers. Macromolecules, 2015, 48, 5605-5613.	4.8	12
266	Implicit and explicit host effects on excitons in pentacene derivatives. Journal of Chemical Physics, 2018, 148, 104108.	3.0	12
267	Switching between Local and Global Aromaticity in a Conjugated Macrocycle for Highâ€Performance Organic Sodiumâ€lon Battery Anodes. Angewandte Chemie, 2020, 132, 13058-13064.	2.0	12
268	Near-IR Absorbing Molecular Semiconductors Incorporating Cyanated Benzothiadiazole Acceptors for High-Performance Semitransparent n-Type Organic Field-Effect Transistors., 2022, 4, 165-174.		12
269	Designing solution-processable air-stable liquid crystalline crosslinkable semiconductors. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 2779-2787.	3.4	11
270	The effect of deuteration on organic magnetoresistance. Synthetic Metals, 2011, 161, 608-612.	3.9	11

#	Article	IF	Citations
271	Charge photogeneration in donor/acceptor organic solar cells. Journal of Photonics for Energy, 2012, 2, 021001.	1.3	11
272	TOF mobility measurements in pristine films of P3HT: control of hole injection and influence of film thickness., 2006, 6334, 16.		10
273	Theoretical and experimental investigations of a polyalkylated-thieno[3,2-b]thiophene semiconductor. Journal of Applied Physics, 2008, 104, 083705.	2.5	10
274	Polyterthiophenes Incorporating 3,4â€Difluorothiophene Units: Application in Organic Fieldâ€Effect Transistors. Macromolecular Chemistry and Physics, 2010, 211, 2642-2648.	2.2	10
275	Bulk charge transport in liquid-crystalline polymer semiconductors based on poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). Polymer Chemistry, 2010, 1, 1448.	3.9	10
276	Conjugated Polymer–Porphyrin Complexes for Organic Electronics. ChemPhysChem, 2015, 16, 1223-1230.	2.1	10
277	A Structurally Simple but Highâ€Performing Donor–Acceptor Polymer for Fieldâ€Effect Transistor Applications. Advanced Electronic Materials, 2020, 6, 2000490.	5.1	10
278	Reconciling the Driving Force and the Barrier to Charge Separation in Donor–Nonfullerene Acceptor Films. ACS Energy Letters, 2021, 6, 3572-3581.	17.4	10
279	Design of experiment optimization of aligned polymer thermoelectrics doped by ion-exchange. Applied Physics Letters, 2021, 119, .	3.3	10
280	Functional group introduction and aromatic unit variation in a set of π-conjugated macrocycles: revealing the central role of local and global aromaticity. Organic Chemistry Frontiers, 2021, 8, 4730-4745.	4.5	10
281	The influence of molecular weight on the microstructure and thin film transistor characteristics of pBTTT polymers , 2006, , .		9
282	Observation of bi-polarons in blends of conjugated copolymers and fullerene derivatives. Physical Chemistry Chemical Physics, 2011, 13, 16579.	2.8	9
283	Synthesis of tetraselenophenoporphyrazine and its application in transistor devices. Journal of Materials Chemistry C, 2013, 1, 6198.	5.5	9
284	Routes to some 3,6-disubstituted phthalonitriles and examples of phthalocyanines derived therefrom: An overview. Journal of Porphyrins and Phthalocyanines, 2013, 17, 649-664.	0.8	9
285	14ÂGHz Schottky Diodes Using a <i>p</i> â€Doped Organic Polymer. Advanced Materials, 2022, 34, e2108524. Characterization of Interfacial Structure in Polymer-Fullerene Bulk Heterojunctions via <mml:math< td=""><td>21.0</td><td>9</td></mml:math<>	21.0	9
286	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mrow>13</mml:mrow></mml:mmultiscripts></mml:mrow> <td>7.8</td> <td>8</td>	7.8	8
287	<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo< p=""> Thioalkyl- and sulfone-substituted poly(<i>p</i>p>henylene vinylene)s. Polymer Chemistry, 2019, 10, 738-750.</mml:mo<></mml:mrow></mml:math>	3.9	8
288	Fast and Selective Post-polymerization Modification of Conjugated Polymers Using Dimethyldioxirane. Frontiers in Chemistry, 2019, 7, 123.	3.6	8

#	Article	IF	CITATIONS
289	Polymer Lightâ€Emitting Transistors With Chargeâ€Carrier Mobilities Exceeding 1 cm ² V ^{â~1} s ^{â~1} . Advanced Electronic Materials, 2020, 6, 1901132.	5.1	8
290	Highly Deformed o â€Carborane Functionalised Nonâ€linear Polycyclic Aromatics with Exceptionally Long Câ°. C Bonds. Chemistry - A European Journal, 2021, 27, 1970-1975.	3. 3	8
291	Transition-Metal-Free Homopolymerization of Pyrrolo[2,3- <i>d</i> :5,4- <i>d</i> ?′]bisthiazoles via Nucleophilic Aromatic Substitution. ACS Applied Materials & Diterfaces, 2021, 13, 41094-41101.	8.0	8
292	Highâ€Currentâ€Density Organic Electrochemical Diodes Enabled by Asymmetric Active Layer Design. Advanced Materials, 2022, 34, e2107355.	21.0	8
293			
_			

#	Article	IF	Citations
307	Addition of Diquat Enhances the Electron Mobility in Various Nonâ€Fullerene Acceptor Molecules. Advanced Functional Materials, 0, , 2202954.	14.9	6
308	New liquid crystalline solution processible organic semiconductors and their performance in field effect transistors. , 2003 , , .		5
309	Electronic structure of a novel alkylidene fluorene polymer in the pristine state. Chemical Physics Letters, 2004, 385, 184-188.	2.6	5
310	Influence of synthetic pathway, molecular weight and side chains on properties of indacenodithiophene-benzothiadiazole copolymers made by direct arylation polycondensation. Journal of Materials Chemistry C, 2021, 9, 4597-4606.	5.5	5
311	Facile synthesis of annulated benzothiadiazole derivatives and their application as medium band gap acceptors in organic photovoltaic devices. Journal of Materials Chemistry C, 2022, 10, 9249-9256.	5.5	5
312	Spectroscopic and morphological investigation of conjugated photopolymerisable quinquethiophene liquid crystals. Current Applied Physics, 2012, 12, e59-e66.	2.4	4
313	Resolving Anomalous Heavy Atom Effects from Discrete Triplet Mediated Photochemistry Events on Single Conjugated Polymer Chains. Journal of Physical Chemistry C, 2018, 122, 9718-9725.	3.1	4
314	Double Ring-Closing Approach for the Synthesis of 2,3,6,7-Substituted Anthracene Derivatives. Journal of Organic Chemistry, 2020, 85, 8240-8244.	3.2	4
315	[2.2.2.2]Paracyclophanetetraenes (PCTs): cyclic structural analogues of poly(p‑phenylene vinylene)s (PPVs). Open Research Europe, 0, 1, 111.	2.0	4
316	Effects of semiconductor-dielectric interfaces on polymeric thin-film transistors. , 2005, , .		3
317	Stability in OTFT Gas Sensors. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	3
318	Distinguishing between nonlinear channel transport and contact effects in organic FETs. Proceedings of SPIE, 2007, , .	0.8	3
319	Novel soluble thieno[3,2-b]thiophene fused porphyrazine. RSC Advances, 2015, 5, 90645-90650.	3.6	3
320	Controlled integration of oligo- and polythiophenes at the molecular scale. Physical Chemistry Chemical Physics, 2015, 17, 26525-26529.	2.8	3
321	Development of Polymer Semiconductors for Field-Effect Transistor Devices in Displays. , 2009, , 393-429.		3
322	Stable semiconducting thiophene polymers and their field effect transistor characteristics. , 2005, , .		2
323	The Impact of the Dielectric/Semiconductor Interface on Microstructure and Charge Carrier Transport in High-Performance Polythiophene Transistors. ECS Transactions, 2008, 13, 113-122.	0.5	2
324	Solar Cells: Domain Compositions and Fullerene Aggregation Govern Charge Photogeneration in Polymer/Fullerene Solar Cells (Adv. Energy Mater. 11/2014). Advanced Energy Materials, 2014, 4, .	19.5	2

#	Article	IF	CITATIONS
325	Functional 4 <i>H</i> i>Dithieno[3,2- <i>b</i> i>:2′,3′- <i>d</i>)]pyrrole Derivatives in Base-Dopable Conjugated Polymers and Oligomers. Macromolecules, 2020, 53, 6649-6655.	4.8	2
326	Oneâ€Step Sixfold Cyanation of Benzothiadiazole Acceptor Units for Airâ€Stable Highâ€Performance nâ€Type Organic Fieldâ€Effect Transistors. Angewandte Chemie, 2021, 133, 6035-6042.	2.0	2
327	Influence of Backbone Curvature on the Organic Electrochemical Transistor Performance of Glycolated Donor–Acceptor Conjugated Polymers. Angewandte Chemie, 2021, 133, 19831-19836.	2.0	2
328	[2.2.2.2]Paracyclophanetetraenes (PCTs): cyclic structural analogues of poly(pâ€'phenylene vinylene)s (PPVs). Open Research Europe, 0, 1, 111.	2.0	2
329	Vinylene Flanked Naphtho[1,2- <i>c</i> :5,6- <i>c</i> ′]bis[1,2,5]thiadiazole Polymer for Low-Crystallinity Ambipolar Transistors. Macromolecules, 2022, 55, 331-337.	4.8	2
330	Self-assembled liquid crystalline solution processable semiconductors. , 2004, , .		1
331	Polythiophene thin-film transistor array for gas sensing. , 2005, , .		1
332	Thienothiophene Copolymers in Field Effect Transistors. , 0, , 647-672.		1
333	High-mobility ambipolar polymer transistors: properties and function. , 2012, , .		1
334	Using the Stark effect to understand charge generation in organic solar cells. Proceedings of SPIE, 2015, , .	0.8	1
335	Preface to the Special Issue of ChemSusChem on Advanced Organic Solar Cells. ChemSusChem, 2021, 14, 3426-3427.	6.8	1
336	Flow Synthesis: A Better Way to Conjugated Polymers?., 2019,, 613-652.		1
337	New Liquid Crystalline Semiconductors And Their Fabrication in Organic Field Effect Transistor Devices. Materials Research Society Symposia Proceedings, 2003, 771, 831.	0.1	1
338	Semiconducting Polythiophenes for Field-Effect Transistor Devices in Flexible Electronics: Synthesis and Structure Property Relationships. Kluwer International Series in Electronic Materials: Science and Technology, 2009, , 261-296.	0.5	1
339	Triplet Generation Dynamics in Si- and Ge-Bridged Conjugated Copolymers. Journal of Physical Chemistry C, 2022, 126, 1036-1045.	3.1	1
340	Charge transport and recombination in wide-bandgap Y6 derivatives-based organic solar cells. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2022, 13, 025001.	1.5	1
341	Structural Characterization of a Red Phthalocyanine ChemInform, 2003, 34, no.	0.0	O
342	Hexyl-Substituted Oligothiophenes with a Central Tetrafluorophenylene Unit: Crystal Engineering of Planar Structures for p-Type Organic Semiconductors ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
343	Photolithographically patternable electroluminescent liquid crystalline materials for full-colour organic light emitting displays. , 2006, , .		O
344	Achieving high mobilities in solution-processable organic FETs by minimizing contact effects. , 2007, , .		0
345	Reliable Suzuki Chemistry For Functionalised Polythiophene Synthesis. Materials Research Society Symposia Proceedings, 2007, 1003, 1.	0.1	O
346	Relating microstructure to transport in organic semiconductor transistors. , 2009, , .		0
347	Diseleno[3,2-b :2′,3′-d]selenophenes: Diseleno[3,2-b :2′,3′-d]selenophene-Containing High-Mobility Conjugated Polymer for Organic Field-Effect Transistors (Adv. Sci. 13/2019). Advanced Science, 2019, 6, 1970080.	11.2	O
348	Morphological Basis for High Mobility of Poly(bithiophene thienothiophene)., 2006,,.		0
349	Faraday Rotation Measurements on Thin Films of Regioregular Alkyl Substituted Polythiophene. , 2007, , .		0
350	High Throughput Screening of Highly Efficient Non-fullerene Acceptor based Organic Solar Cells Assisted by a Multi-Dataset Scientific Robot. , 0, , .		0
351	Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells. , 0, , .		O
352	Organic Tandem Solar Cells with 15% Efficiency Employing Novel Wide Bandgap Nonfullerene Acceptor. , 0, , .		0
353	Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells. , 0, , .		O
354	Observing the On-Site Generation of Excitons and Charges by Low-Temperature Spectroscopy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 34126-34133.	8.0	0