C S Goyon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8993620/publications.pdf

Version: 2024-02-01

53	1,840	25	43
papers	citations	h-index	g-index
54	54	54	1561 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Strong suppression of heat conduction in a laboratory replica of galaxy-cluster turbulent plasmas. Science Advances, 2022, 8, eabj6799.	10.3	11
2	Measuring characteristic differences between high- and low-performing discharges on the MegaJOuLe Neutron Imaging Radiography (MJOLNIR) DPF. Physics of Plasmas, 2022, 29, 062708.	1.9	0
3	Laser transport and backscatter in low-density SiO2 and Ta2O5 foams. Physics of Plasmas, 2021, 28, .	1.9	6
4	First Experiments and Radiographs on the MegaJOuLe Neutron Imaging Radiography (MJOLNIR) Dense Plasma Focus. IEEE Transactions on Plasma Science, 2021, 49, 3299-3306.	1.3	6
5	Dynamics of laser-generated magnetic fields using long laser pulses. Physical Review E, 2021, 103, 033201.	2.1	7
6	Slow and Fast Light in Plasma Using Optical Wave Mixing. Physical Review Letters, 2021, 126, 205001.	7.8	4
7	Hotspot parameter scaling with velocity and yield for high-adiabat layered implosions at the National Ignition Facility. Physical Review E, 2020, 102, 023210.	2.1	25
8	Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	20
9	Laser intensity scaling of the magnetic field from a laser-driven coil target. Journal of Applied Physics, 2020, 127, .	2.5	11
10	Stimulated Raman scattering mechanisms and scaling behavior in planar direct-drive experiments at the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	38
11	X-ray Sources from Self-modulated Laser Wakefield Acceleration: Applications in High Energy Density Sciences. , 2020, , .		O
12	Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF). Plasma Physics and Controlled Fusion, 2019, 61, 014023.	2.1	53
13	Betatron x-ray radiation in the self-modulated laser wakefield acceleration regime: prospects for a novel probe at large scale laser facilities. Nuclear Fusion, 2019, 59, 032003.	3.5	17
14	X-ray sources using a picosecond laser driven plasma accelerator. Physics of Plasmas, 2019, 26, .	1.9	22
15	An analytical study of non-resonant transient cross-beam power transfer relevant to recent progress in plasma photonics. Physics of Plasmas, 2019, 26, .	1.9	4
16	Theory and measurements of convective Raman side scatter in inertial confinement fusion experiments. Physical Review E, 2019, 99, 033203.	2.1	34
17	Stimulated backscatter of laser light from BigFoot hohlraums on the National Ignition Facility. Physics of Plasmas, 2019, 26, .	1.9	28
18	The National Direct-Drive Inertial Confinement Fusion Program. Nuclear Fusion, 2019, 59, 032007.	3.5	10

#	Article	IF	CITATIONS
19	Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments. Physical Review Letters, 2018, 120, 055001.	7.8	104
20	The high velocity, high adiabat, "Bigfoot―campaign and tests of indirect-drive implosion scaling. Physics of Plasmas, 2018, 25, .	1.9	90
21	Crossed-beam energy transfer: polarization effects and evidence of saturation. Plasma Physics and Controlled Fusion, 2018, 60, 054017.	2.1	17
22	Energy transfer between lasers in low-gas-fill-density hohlraums. Physical Review E, 2018, 98, .	2.1	27
23	Maximizing neutron yields by scaling hollow diameter of a dense plasma focus anode. Journal of Applied Physics, 2018, 124, 233301.	2.5	10
24	High-Performance Indirect-Drive Cryogenic Implosions at High Adiabat on the National Ignition Facility. Physical Review Letters, 2018, 121, 135001.	7.8	86
25	Time resolved detection of two-plasmon decay using three-halves harmonic emission on the National Ignition Facility. Review of Scientific Instruments, 2018, 89, 083504.	1.3	0
26	Implosion shape control of high-velocity, large case-to-capsule ratio beryllium ablators at the National Ignition Facility. Physics of Plasmas, 2018, 25, 072708.	1.9	16
27	Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant. Physics of Plasmas, 2018, 25, .	1.9	42
28	Betatron x-ray radiation from laser-plasma accelerators driven by femtosecond and picosecond laser systems. Physics of Plasmas, 2018, 25, 056706.	1.9	10
29	Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility. Physical Review Letters, 2018, 120, 245003.	7.8	205
30	Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System. Physical Review Letters, 2017, 118, 015001.	7.8	48
31	Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity. Physics of Plasmas, 2017, 24, .	1.9	106
32	Observation of Betatron X-Ray Radiation in a Self-Modulated Laser Wakefield Accelerator Driven with Picosecond Laser Pulses. Physical Review Letters, 2017, 118, 134801.	7.8	45
33	Laser-direct-drive program: Promise, challenge, and path forward. Matter and Radiation at Extremes, 2017, 2, 37-54.	3.9	117
34	Ultrafast probing of magnetic field growth inside a laser-driven solenoid. Physical Review E, 2017, 95, 033208.	2.1	49
35	High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target. Review of Scientific Instruments, 2016, 87, 11D827.	1.3	32
36	Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility. Physics of Plasmas, 2016, 23, .	1.9	27

#	Article	IF	Citations
37	Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility. Physical Review Letters, 2016, 117, 225002.	7.8	61
38	High Power Dynamic Polarization Control Using Plasma Photonics. Physical Review Letters, 2016, 116, 205001.	7.8	55
39	Study on a compact and adaptable Thomson Spectrometer for laser-initiated $\langle \sup 11 \langle \sup 9 \langle i \rangle \rangle$, i.e., $\langle i \rangle \rangle$ and low-medium energy particle detection. Journal of Instrumentation, 2016, 11, C05010-C05010.	1.2	7
40	Reduction of stimulated Brillouin backscattering with plasma beam smoothing. Physics of Plasmas, 2015, 22, .	1.9	11
41	New scheme to produce aneutronic fusion reactions by laser-accelerated ions. Laser and Particle Beams, 2015, 33, 117-122.	1.0	29
42	CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification. Review of Scientific Instruments, 2015, 86, 083307.	1.3	27
43	Laser light triggers increased Raman amplification in the regime of nonlinear Landau damping. Nature Communications, 2014, 5, 4158.	12.8	28
44	Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma. Nature Communications, 2013, 4, 2506.	12.8	153
45	Ultrafast Short-Range Disordering of Femtosecond-Laser-Heated Warm Dense Aluminum. Physical Review Letters, 2013, 111, 245004.	7.8	41
46	Experimental Approach to Interaction Physics Challenges of the Shock Ignition Scheme Using Short Pulse Lasers. Physical Review Letters, 2013, 111, 235006.	7.8	17
47	Effects of hydrodynamics on Stimulated Brillouin Scattering in multiple plasma interaction. EPJ Web of Conferences, 2013, 59, 05004.	0.3	0
48	Laser-plasma interaction physics for shock ignition. EPJ Web of Conferences, 2013, 59, 05006.	0.3	3
49	Laser plasma interaction physics on the LIL facility. EPJ Web of Conferences, 2013, 59, 05003.	0.3	2
50	Dynamique ultra-rapide de la transition de phase solide-liquide-vapeur par spectroscopie XANES r \hat{A} © solue en temps. , 2013, , .		0
51	Experimental investigation of the stimulated Brillouin scattering growth and saturation at 526 and 351 nm for direct drive and shock ignition. Physics of Plasmas, 2012, 19, 012705.	1.9	18
52	Unraveling the Solid-Liquid-Vapor Phase Transition Dynamics at the Atomic Level with Ultrafast X-Ray Absorption Near-Edge Spectroscopy. Physical Review Letters, 2011, 107, 245006.	7.8	44
53	Interaction physics for the shock ignition scheme of inertial confinement fusion targets. Plasma Physics and Controlled Fusion, 2011, 53, 124034.	2.1	16