
Michael P Schwartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8993412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving Climate and Outcomes for Underrepresented Chemistry Graduate Students at a Major Research University: A Case Study. Journal of Chemical Education, 2022, 99, 452-460.	2.3	4
2	Interspecies chimeric conditions affect the developmental rate of human pluripotent stem cells. PLoS Computational Biology, 2021, 17, e1008778.	3.2	11
3	3D iPSC modeling of the retinal pigment epithelium-choriocapillaris complex identifies factors involved in the pathology of macular degeneration. Cell Stem Cell, 2021, 28, 846-862.e8.	11.1	30
4	Subtoxic dose of lithium cobalt oxide nanosheets impacts critical molecular pathways in trout gill epithelial cells. Environmental Science: Nano, 2020, 7, 3419-3430.	4.3	4
5	Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27854-27861.	7.1	24
6	PSEN1ΔE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human iPSC-Derived Microglia. Stem Cell Reports, 2019, 13, 669-683.	4.8	132
7	Quantitative Labelâ€Free Imaging of 3D Vascular Networks Selfâ€Assembled in Synthetic Hydrogels. Advanced Healthcare Materials, 2019, 8, e1801186.	7.6	15
8	The Influence of Biomaterials on Cytokine Production in 3D Cultures. Biomacromolecules, 2017, 18, 709-718.	5.4	18
9	Species-specific developmental timing is maintained by pluripotent stem cells ex utero. Developmental Biology, 2017, 423, 101-110.	2.0	43
10	Uniform neural tissue models produced on synthetic hydrogels using standard culture techniques. Experimental Biology and Medicine, 2017, 242, 1679-1689.	2.4	31
11	A Genome-wide Analysis of Human Pluripotent Stem Cell-Derived Endothelial Cells in 2D or 3D Culture. Stem Cell Reports, 2017, 8, 907-918.	4.8	41
12	Functional characterization of human pluripotent stem cell-derived arterial endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6072-E6078.	7.1	105
13	Versatile synthetic alternatives to Matrigel for vascular toxicity screening and stem cell expansion. Nature Biomedical Engineering, 2017, 1, .	22.5	86
14	Human iPSC-derived endothelial cell sprouting assay in synthetic hydrogel arrays. Acta Biomaterialia, 2016, 39, 12-24.	8.3	27
15	Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels. Acta Biomaterialia, 2016, 35, 32-41.	8.3	86
16	Human Induced Pluripotent Stem Cell Derived Neuronal Cells Cultured on Chemically-Defined Hydrogels for Sensitive In Vitro Detection of Botulinum Neurotoxin. Scientific Reports, 2015, 5, 14566.	3.3	26
17	A synthetic modular approach for modeling the role of the 3D microenvironment in tumor progression. Scientific Reports, 2015, 5, 17814.	3.3	39
18	Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proceedings of the United States of America, 2015, 112, 12516-12521.	7.1	288

MICHAEL P SCHWARTZ

#	Article	IF	CITATIONS
19	Human Vascular Tissue Models Formed from Human Induced Pluripotent Stem Cell Derived Endothelial Cells. Stem Cell Reviews and Reports, 2015, 11, 511-525.	5.6	107
20	Micropatterning of 3D Microenvironments for Living Biosensor Applications. Biosensors, 2014, 4, 28-44.	4.7	34
21	Differential effects of cell adhesion, modulus and VEGFR-2 inhibition on capillary network formation in synthetic hydrogel arrays. Biomaterials, 2014, 35, 2149-2161.	11.4	62
22	Biomaterial arrays with defined adhesion ligand densities and matrix stiffness identify distinct phenotypes for tumorigenic and non-tumorigenic human mesenchymal cell types. Biomaterials Science, 2014, 2, 745-756.	5.4	44
23	A peptide functionalized poly(ethylene glycol) (PEG) hydrogel for investigating the influence of biochemical and biophysical matrix properties on tumor cell migration. Biomaterials Science, 2014, 2, 1024.	5.4	74
24	Wnt5a Directs Polarized Calcium Gradients by Recruiting Cortical Endoplasmic Reticulum to the Cell Trailing Edge. Developmental Cell, 2013, 26, 645-657.	7.0	55
25	A human pluripotent stem cell platform for assessing developmental neural toxicity screening. Stem Cell Research and Therapy, 2013, 4, S12.	5.5	17
26	Extracellular matrix protein adsorption to phosphate-functionalized gels from serum promotes osteogenic differentiation of human mesenchymal stem cells. Acta Biomaterialia, 2013, 9, 4525-4534.	8.3	59
27	A Quantitative Comparison of Human HT-1080 Fibrosarcoma Cells and Primary Human Dermal Fibroblasts Identifies a 3D Migration Mechanism with Properties Unique to the Transformed Phenotype. PLoS ONE, 2013, 8, e81689.	2.5	32
28	A chemically-defined screening platform reveals behavioral similarities between primary human mesenchymal stem cells and endothelial cells. Integrative Biology (United Kingdom), 2012, 4, 1508-1521.	1.3	18
29	Biomimetic Approaches to Control Soluble Concentration Gradients in Biomaterials. Macromolecular Bioscience, 2011, 11, 483-492.	4.1	38
30	Keratinocyte proximity and contact can play a significant role in determining mesenchymal stem cell fate in human tissue. FASEB Journal, 2011, 25, 122-131.	0.5	31
31	A synthetic strategy for mimicking the extracellular matrix provides new insight about tumor cell migration. Integrative Biology (United Kingdom), 2010, 2, 32-40.	1.3	79
32	A Versatile Synthetic Extracellular Matrix Mimic via Thiolâ€Norbornene Photopolymerization. Advanced Materials, 2009, 21, 5005-5010.	21.0	578
33	The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors. Biomaterials, 2009, 30, 26-34.	11.4	148
34	Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials, 2009, 30, 6702-6707.	11.4	951
35	Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging. Advanced Materials, 2008, 20, 1630-1635.	21.0	516
36	Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Materials, 2008, 7, 816-823.	27.5	745

#	Article	IF	CITATIONS
37	Porous SiO2Interferometric Biosensor for Quantitative Determination of Protein Interactions:Â Binding of Protein A to Immunoglobulins Derived from Different Species. Analytical Chemistry, 2007, 79, 327-334.	6.5	122
38	Using a porous silicon photonic crystal for bacterial cell-based biosensing. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1439-1443.	1.8	51
39	A simplified biomolecule attachment strategy for biosensing using a porous Si oxide interferometer. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1394-1398.	1.8	6
40	Using an oxidized porous silicon interferometer for determination of relative protein binding affinity through non-covalent capture probe immobilization. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1444-1448.	1.8	26
41	Reaction of acetonitrile with the silicon(001) surface: A combined XPS and FTIR study. Surface Science, 2007, 601, 945-953.	1.9	24
42	Semiconductor Surface-Induced 1,3-Hydrogen Shift:Â The Role of Covalent vs Zwitterionic Character. Journal of the American Chemical Society, 2006, 128, 11054-11061.	13.7	12
43	The Smart Petri Dish:Â A Nanostructured Photonic Crystal for Real-Time Monitoring of Living Cells. Langmuir, 2006, 22, 7084-7090.	3.5	104
44	Chemical modification of silicon surfaces for biological applications. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1380-1384.	1.8	67
45	Adsorption of Acrylonitrile on Diamond and Silicon (001)â^'(2 × 1) Surfaces: Effects of Dimer Structure on Reaction Pathways and Product Distributions. Journal of the American Chemical Society, 2005, 127, 8348-8354.	13.7	24
46	Engineering the Chemistry and Nanostructure of Porous Silicon Fabry-Pérot Films for Loading and Release of a Steroid. Langmuir, 2004, 20, 11264-11269.	3.5	161
47	DNA-Modified Diamond Surfaces. Langmuir, 2003, 19, 1938-1942.	3.5	134
48	Formation of an Atomically Abrupt Interface between a Polycyclic Aromatic Molecule and the Silicon (001) Surface via Direct Siâ^'C Linkage. Journal of Physical Chemistry B, 2003, 107, 224-228.	2.6	19
49	Interfacial Chemistry of Pentacene on Clean and Chemically Modified Silicon (001) Surfaces. Journal of Physical Chemistry B, 2003, 107, 11142-11148.	2.6	65
50	Formation of π-conjugated molecular arrays on silicon (001) surfaces by heteroatomic Diels–Alder chemistry. Surface Science, 2002, 514, 362-375.	1.9	46
51	The role of Pi-conjugation in attachment of organic molecules to the silicon (001) surface. Surface Science, 2002, 515, 75-86.	1.9	51
52	Sulfur Atoms as Tethers for Selective Attachment of Aromatic Molecules to Silicon(001) Surfaces. Journal of Physical Chemistry B, 2001, 105, 3079-3087.	2.6	58
53	Cycloaddition Chemistry of Organic Molecules with Semiconductor Surfaces. Accounts of Chemical Research, 2000, 33, 617-624.	15.6	408
54	Interaction of π-Conjugated Organic Molecules with π-Bonded Semiconductor Surfaces:  Structure, Selectivity, and Mechanistic Implications. Journal of the American Chemical Society, 2000, 122, 8529-8538.	13.7	88