
Mat Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8993388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 2014, 4, 111-116.	18.8	1,572
2	Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 2004, 430, 768-772.	27.8	1,423
3	Health and climate change: policy responses to protect public health. Lancet, The, 2015, 386, 1861-1914.	13.7	1,311
4	The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geoscience, 2010, 3, 391-397.	12.9	1,029
5	Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 2005, 433, 403-406.	27.8	994
6	Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 1999, 104, 24155-24175.	3.3	955
7	Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 2004, 78, 137.	2.8	635
8	ENSO and greenhouse warming. Nature Climate Change, 2015, 5, 849-859.	18.8	596
9	Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature, 2007, 448, 1037-1041.	27.8	570
10	Increased frequency of extreme LaÂNiña events under greenhouse warming. Nature Climate Change, 2015, 5, 132-137.	18.8	479
11	Understanding El Niño in Ocean–Atmosphere General Circulation Models: Progress and Challenges. Bulletin of the American Meteorological Society, 2009, 90, 325-340.	3.3	455
12	The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology, 2004, 78, 157.	2.8	387
13	The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics, 2001, 17, 61-81.	3.8	348
14	El Niño in a changing climate: a multi-model study. Ocean Science, 2005, 1, 81-95.	3.4	332
15	ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing. Reviews of Geophysics, 2018, 56, 185-206.	23.0	330
16	Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature, 2008, 453, 212-215.	27.8	326
17	Towards quantifying uncertainty in transient climate change. Climate Dynamics, 2006, 27, 127-147.	3.8	317
18	A climate database for Mars. Journal of Geophysical Research, 1999, 104, 24177-24194.	3.3	299

#	Article	IF	CITATIONS
19	A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1993-2028.	3.4	262
20	Towards predictive understanding of regional climate change. Nature Climate Change, 2015, 5, 921-930.	18.8	253
21	El Niño- or La Niña-like climate change?. Climate Dynamics, 2005, 24, 89-104.	3.8	248
22	High sensitivity of future global warming to land carbon cycle processes. Environmental Research Letters, 2012, 7, 024002.	5.2	241
23	Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles. Climate Dynamics, 2011, 36, 1737-1766.	3.8	233
24	Projected response of the Indian Ocean Dipole to greenhouse warming. Nature Geoscience, 2013, 6, 999-1007.	12.9	201
25	Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2021, 2, 628-644.	29.7	197
26	Calibration Strategies: A Source of Additional Uncertainty in Climate Change Projections. Bulletin of the American Meteorological Society, 2012, 93, 21-26.	3.3	183
27	Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environmental Research Letters, 2010, 5, 034012.	5.2	180
28	Interannual to Decadal Climate Predictability in the North Atlantic: A Multimodel-Ensemble Study. Journal of Climate, 2006, 19, 1195-1203.	3.2	161
29	More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature, 2012, 488, 365-369.	27.8	160
30	Granger Causality of Coupled Climate Processes: Ocean Feedback on the North Atlantic Oscillation. Journal of Climate, 2006, 19, 1182-1194.	3.2	155
31	Ensembles and probabilities: a new era in the prediction of climate change. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1957-1970.	3.4	154
32	The Carbon Cycle Response to ENSO: A Coupled Climate–Carbon Cycle Model Study. Journal of Climate, 2001, 14, 4113-4129.	3.2	151
33	North Atlantic Oscillation response to transient greenhouse gas forcing and the impact on European winter climate: a CMIP2 multi-model assessment. Climate Dynamics, 2006, 27, 401-420.	3.8	150
34	When could global warming reach 4°C?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 67-84.	3.4	149
35	Towards quantifying uncertainty in predictions of Amazon â€~dieback'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1857-1864.	4.0	139
36	Climate predictability on interannual to decadal time scales: the initial value problem. Climate Dynamics, 2002, 19, 671-692.	3.8	137

#	Article	IF	CITATIONS
37	Representing El Niño in Coupled Ocean–Atmosphere GCMs: The Dominant Role of the Atmospheric Component. Journal of Climate, 2004, 17, 4623-4629.	3.2	135
38	Constraining climate forecasts: The role of prior assumptions. Geophysical Research Letters, 2005, 32, .	4.0	135
39	A Review of Predictability Studies of Atlantic Sector Climate on Decadal Time Scales. Journal of Climate, 2006, 19, 5971-5987.	3.2	135
40	Quantifying future climate change. Nature Climate Change, 2012, 2, 403-409.	18.8	132
41	Multivariate probabilistic projections using imperfect climate models part I: outline of methodology. Climate Dynamics, 2012, 38, 2513-2542.	3.8	126
42	Seasonal to interannual Arctic sea ice predictability in current global climate models. Geophysical Research Letters, 2014, 41, 1035-1043.	4.0	116
43	Broad range of 2050 warming from an observationally constrained large climate model ensemble. Nature Geoscience, 2012, 5, 256-260.	12.9	109
44	Links between tropical Pacific seasonal, interannual and orbital variability during theÂHolocene. Nature Geoscience, 2016, 9, 168-173.	12.9	105
45	The El Niño–Southern Oscillation in the Second Hadley Centre Coupled Model and Its Response to Greenhouse Warming. Journal of Climate, 2000, 13, 1299-1312.	3.2	103
46	Understanding uncertainties in the response of ENSO to greenhouse warming. Geophysical Research Letters, 2000, 27, 3509-3512.	4.0	98
47	Seasonal intercomparison of observational rainfall datasets over India during the southwest monsoon season. International Journal of Climatology, 2015, 35, 2326-2338.	3.5	94
48	Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nature Climate Change, 2018, 8, 493-498.	18.8	92
49	Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science, 2021, 374, eaay9165.	12.6	92
50	Predictability of Winter Climate over the North Atlantic European Region during ENSO Events. Journal of Climate, 2004, 17, 1953-1974.	3.2	88
51	The 2021 western North America heat wave among the most extreme events ever recorded globally. Science Advances, 2022, 8, eabm6860.	10.3	83
52	Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: global impacts of biases in a coupled model. Climate Dynamics, 2017, 48, 2279-2295.	3.8	81
53	Baroclinic Wave Transitions in the Martian Atmosphere. Icarus, 1996, 120, 344-357.	2.5	77
54	Quantifying the likelihood of a continued hiatus in global warming. Nature Climate Change, 2015, 5, 337-342.	18.8	76

#	Article	IF	CITATIONS
55	Predictability of decadal variations in the thermohaline circulation and climate. Geophysical Research Letters, 2003, 30, .	4.0	74
56	Assessing the Relative Roles of Initial and Boundary Conditions in Interannual to Decadal Climate Predictability. Journal of Climate, 2002, 15, 3104-3109.	3.2	71
57	Quantifying the water vapour feedback associated with post-Pinatubo global cooling. Climate Dynamics, 2004, 23, 207-214.	3.8	69
58	SST and circulation trend biases cause an underestimation of European precipitation trends. Climate Dynamics, 2013, 40, 1-20.	3.8	65
59	Uncertainty in the ENSO amplitude change from the past to the future. Geophysical Research Letters, 2012, 39, .	4.0	64
60	Structural Similarities and Differences in Climate Responses to CO2 Increase between Two Perturbed Physics Ensembles. Journal of Climate, 2010, 23, 1392-1410.	3.2	62
61	Statistical problems in the probabilistic prediction of climate change. Environmetrics, 2012, 23, 364-372.	1.4	61
62	Improved stochastic physics schemes for global weather and climate models. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 147-159.	2.7	58
63	A Comparison of the Variability of a Climate Model with Paleotemperature Estimates from a Network of Tree-Ring Densities. Journal of Climate, 2002, 15, 1497-1515.	3.2	56
64	Challenges and opportunities for improved understanding of regional climate dynamics. Nature Climate Change, 2018, 8, 101-108.	18.8	56
65	Frequency distributions of transient regional climate change from perturbed physics ensembles of general circulation model simulations. Climate Dynamics, 2006, 27, 357-375.	3.8	55
66	Probabilistic projections of transient climate change. Climate Dynamics, 2013, 40, 2937-2972.	3.8	53
67	Observational challenges in evaluating climate models. Nature Climate Change, 2013, 3, 940-941.	18.8	52
68	Modelling mid-Holocene tropical climate and ENSO variability: towards constraining predictions of future change with palaeo-data. Climate Dynamics, 2007, 30, 19-36.	3.8	51
69	Probabilistic projections for 21st century European climate. Natural Hazards and Earth System Sciences, 2010, 10, 2009-2020.	3.6	50
70	Reliability of multi-model and structurally different single-model ensembles. Climate Dynamics, 2012, 39, 599-616.	3.8	49
71	An objective tropical Atlantic sea surface temperature gradient index for studies of south Amazon dry-season climate variability and change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1761-1766.	4.0	48
72	The role of ENSO flavours and TNA on recent droughts over Amazon forests and the Northeast Brazil region. International Journal of Climatology, 2021, 41, 3761-3780.	3.5	48

#	Article	IF	CITATIONS
73	Intensification of the annual cycle in the tropical Pacific due to greenhouse warming. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	46
74	The influence of ENSO on South American precipitation during austral summer and autumn in observations and models. International Journal of Climatology, 2016, 36, 618-635.	3.5	46
75	El Niño–Southern Oscillation, Pliocene climate and equifinality. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 127-156.	3.4	44
76	The Sensitivity of the Rate of Transient Climate Change to Ocean Physics Perturbations. Journal of Climate, 2007, 20, 2315-2320.	3.2	42
77	ENSO teleconnections to the Indian summer monsoon under changing climate. International Journal of Climatology, 2019, 39, 3031-3042.	3.5	39
78	The impact of perturbations to ocean-model parameters on climate and climate change in a coupled model. Climate Dynamics, 2010, 34, 325-343.	3.8	38
79	How uncertain are climate model projections of water availability indicators across the Middle East?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 5117-5135.	3.4	37
80	Distributed computing for public-interest climate modeling research. Computing in Science and Engineering, 2002, 4, 82-89.	1.2	36
81	Midâ€Holocene ENSO: Issues in quantitative modelâ€proxy data comparisons. Paleoceanography, 2008, 23, .	3.0	36
82	Inter-annual tropical Pacific climate variability in an isotope-enabled CGCM: implications for interpreting coral stable oxygen isotope records of ENSO. Climate of the Past, 2013, 9, 1543-1557.	3.4	36
83	New Strategies for Evaluating ENSO Processes in Climate Models. Bulletin of the American Meteorological Society, 2012, 93, 235-238.	3.3	35
84	<scp>ENSO</scp> teleconnections to the Indian summer monsoon in observations and models. International Journal of Climatology, 2017, 37, 1794-1813.	3.5	35
85	Emergence of climate change in the tropical Pacific. Nature Climate Change, 2022, 12, 356-364.	18.8	34
86	Eastward shift and extension of ENSO-induced tropical precipitation anomalies under global warming. Science Advances, 2020, 6, eaax4177.	10.3	33
87	Future changes in the frequency of temperature extremes may be underestimated in tropical and subtropical regions. Communications Earth & Environment, 2021, 2, .	6.8	32
88	An evaluation of <scp>CMIP5</scp> and <scp>CMIP6</scp> climate models in simulating summer rainfall in the Southeast Asian monsoon domain. International Journal of Climatology, 2022, 42, 1181-1202.	3.5	32
89	Martian atmospheric data assimilation with a simplified general circulation model: orbiter and lander networks. Planetary and Space Science, 1996, 44, 1395-1409.	1.7	31
90	The variation of ENSO characteristics associated with atmospheric parameter perturbations in a coupled model. Climate Dynamics, 2008, 30, 643-656.	3.8	31

#	Article	IF	CITATIONS
91	Wave interactions and baroclinic chaos: a paradigm for long timescale variability in planetary atmospheres. Chaos, Solitons and Fractals, 1998, 9, 231-249.	5.1	30
92	Diagnosing Relationships between Mean State Biases and El Niño Shortwave Feedback in CMIP5 Models. Journal of Climate, 2018, 31, 1315-1335.	3.2	29
93	Sensitivity and uncertainty of modelled terrestrial net primary productivity to doubled CO2 and associated climate change for a relatively large perturbed physics ensemble. Agricultural and Forest Meteorology, 2013, 170, 79-88.	4.8	28
94	Northward Propagation of the Intertropical Convergence Zone and Strengthening of Indian Summer Monsoon Rainfall. Geophysical Research Letters, 2020, 47, e2020GL089823.	4.0	28
95	Gravity wave drag in a global circulation model of the Martian atmosphere: Parameterisation and validation. Advances in Space Research, 1997, 19, 1245-1254.	2.6	27
96	The Met Office Hadley Centre climate modelling capability: the competing requirements for improved resolution, complexity and dealing with uncertainty. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 2635-2657.	3.4	27
97	Tropical vertical temperature trends: A real discrepancy?. Geophysical Research Letters, 2007, 34, .	4.0	27
98	Ocean–Atmosphere State Dependence of the Atmospheric Response to Arctic Sea Ice Loss. Journal of Climate, 2017, 30, 1537-1552.	3.2	27
99	Data assimilation with a Martian atmospheric GCM: An example using thermal data. Advances in Space Research, 1997, 19, 1267-1270.	2.6	26
100	Interactions between perturbations to different Earth system components simulated by a fully-coupled climate model. Climate Dynamics, 2013, 41, 3055-3072.	3.8	26
101	The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) data set versionÂ1. Geoscientific Model Development, 2016, 9, 2255-2270.	3.6	26
102	Extreme swings of the South Pacific Convergence Zone and the different types of El Niño events. Geophysical Research Letters, 2014, 41, 4695-4703.	4.0	25
103	Coupled model simulations of mid-Holocene ENSO and comparisons with coral oxygen isotope records. Advances in Geosciences, 0, 6, 29-33.	12.0	25
104	On identifying the role of Sun and the El Niño Southern Oscillation on Indian Summer Monsoon Rainfall. Atmospheric Science Letters, 2015, 16, 162-169.	1.9	24
105	Global Mean Surface Temperature Response to Large cale Patterns of Variability in Observations and CMIP5. Geophysical Research Letters, 2019, 46, 2232-2241.	4.0	24
106	How far ahead could we predict El Niño?. Geophysical Research Letters, 2002, 29, 130-1-130-4.	4.0	23
107	Stratospheric water vapour and high climate sensitivity in a version of the HadSM3 climate model. Atmospheric Chemistry and Physics, 2010, 10, 7161-7167.	4.9	23
108	Reliability and importance of structural diversity of climate model ensembles. Climate Dynamics, 2013, 41, 2745-2763.	3.8	23

#	Article	IF	CITATIONS
109	Understanding Bias in the Evaporative Damping of El Niño–Southern Oscillation Events in CMIP5 Models. Journal of Climate, 2017, 30, 6351-6370.	3.2	22
110	The influence of <scp>ENSO</scp> on South American precipitation: simulation and projection in <scp>CMIP5</scp> models. International Journal of Climatology, 2017, 37, 3319-3339.	3.5	22
111	U.K. Climate Projections: Summer Daytime and Nighttime Urban Heat Island Changes in England's Major Cities. Journal of Climate, 2020, 33, 9015-9030.	3.2	22
112	A GCM climate database for Mars: For mission planning and for scientific studies. Advances in Space Research, 1997, 19, 1213-1222.	2.6	21
113	Fourth CLIVAR Workshop on the Evaluation of ENSO Processes in Climate Models: ENSO in a Changing Climate. Bulletin of the American Meteorological Society, 2016, 97, 817-820.	3.3	20
114	CMIP5 Intermodel Relationships in the Baseline Southern Ocean Climate System and With Future Projections. Earth's Future, 2021, 9, e2020EF001873.	6.3	18
115	Regular baroclinic transient waves in a simplified global circulation model of the Martian atmosphere. Journal of Geophysical Research, 1995, 100, 14421.	3.3	17
116	Quantifying Uncertainty in Model Predictions for the Pliocene (Plio-QUMP): Initial results. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 128-140.	2.3	17
117	Robust increase in population exposure to heat stress with increasing global warming. Environmental Research Letters, 2022, 17, 064049.	5.2	17
118	Projected changes in the n <scp>earâ€future</scp> mean climate and extreme climate events in northeast Thailand. International Journal of Climatology, 2022, 42, 2470-2492.	3.5	15
119	Coupled ocean–atmosphere modeling and predictions. Journal of Marine Research, 2017, 75, 361-402.	0.3	13
120	Multivariate and multi-temporal analysis of meteorological drought in the northeast of Thailand. Weather and Climate Extremes, 2021, 34, 100399.	4.1	13
121	The past and future of El Niño. Nature, 2003, 424, 261-262.	27.8	12
122	Diagnosing ENSO and Global Warming Tropical Precipitation Shifts Using Surface Relative Humidity and Temperature. Journal of Climate, 2018, 31, 1413-1433.	3.2	12
123	Surface Warming and Atmospheric Circulation Dominate Rainfall Changes Over Tropical Rainforests Under Global Warming. Geophysical Research Letters, 2019, 46, 13410-13419.	4.0	12
124	Ocean Climate Observing Requirements in Support of Climate Research and Climate Information. Frontiers in Marine Science, 2019, 6, .	2.5	12
125	ENSO feedbacks and their relationships with the mean state in a flux adjusted ensemble. Climate Dynamics, 2019, 52, 7189-7208.	3.8	12
126	Quantifying global climate feedbacks, responses and forcing under abrupt and gradual CO2 forcing. Climate Dynamics, 2013, 41, 2471-2479.	3.8	11

#	Article	IF	CITATIONS
127	Effect of AMOC collapse on ENSO in a high resolution general circulation model. Climate Dynamics, 2018, 50, 2537-2552.	3.8	11
128	The contrasting climate response to tropical and extratropical energy perturbations. Climate Dynamics, 2018, 51, 3231-3249.	3.8	11
129	The North Atlantic as a Driver of Summer Atmospheric Circulation. Journal of Climate, 2020, 33, 7335-7351.	3.2	11
130	The role of atmosphere and ocean physical processes in ENSO in a perturbed physics coupled climate model. Ocean Science, 2010, 6, 441-459.	3.4	11
131	Impact of a Stochastic Kinetic Energy Backscatter scheme across timeâ€scales and resolutions. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 2625-2637.	2.7	10
132	Physical Mechanisms of Tropical Climate Feedbacks Investigated Using Temperature and Moisture Trends*. Journal of Climate, 2015, 28, 8968-8987.	3.2	10
133	Still weighting to break the model democracy. Geophysical Research Letters, 2017, 44, 3328-3329.	4.0	10
134	Predictions of climate following volcanic eruptions. Geophysical Monograph Series, 2003, , 283-300.	0.1	9
135	Atlantic Atmosphere–Ocean Interaction: A Stochastic Climate Model–Based Diagnosis. Journal of Climate, 2005, 18, 1086-1095.	3.2	9
136	Northern hemisphere winter atmospheric climate: modes of natural variability and climate change. Climate Dynamics, 2008, 31, 195-211.	3.8	9
137	Inferring changes in ENSO amplitude from the variance of proxy records. Geophysical Research Letters, 2015, 42, 1197-1204.	4.0	9
138	Regular and irregular baroclinic waves in a martian general circulation model: A role for diurnal forcing?. Advances in Space Research, 1995, 16, 3-7.	2.6	8
139	Decadal Climate Variability and Cross-Scale Interactions: ICCL 2013 Expert Assessment Workshop. Bulletin of the American Meteorological Society, 2014, 95, ES155-ES158.	3.3	8
140	A hiatus in the stratosphere?. Nature Climate Change, 2015, 5, 497-498.	18.8	8
141	MEETING SUMMARIES. Bulletin of the American Meteorological Society, 2015, 96, 1969-1972.	3.3	8
142	Emerging Skill in Multi-Year Prediction of the Indian Ocean Dipole. Frontiers in Climate, 2021, 3, .	2.8	8
143	The Role of Tropical Mean-State Biases in Modeled Winter Northern Hemisphere El Niño Teleconnections. Journal of Climate, 2020, 33, 4751-4768.	3.2	8
144	Assessing the Significance of Changes in ENSO Amplitude Using Variance Metrics. Journal of Climate, 2014, 27, 4911-4922.	3.2	7

#	Article	IF	CITATIONS
145	Future Changes to El Niño Teleconnections over the North Pacific and North America. Journal of Climate, 2021, , 1-43.	3.2	6
146	An example of the dependence of the transient climate response on the temperature of the modelled climate state. Atmospheric Science Letters, 2009, 10, 23-28.	1.9	5
147	Induced surface fluxes: a new framework for attributing Arctic sea ice volume balance biases to specific model errors. Cryosphere, 2019, 13, 2001-2022.	3.9	5
148	Assessment of the Ability of CMIP6 GCMS to Simulate the Boreal Summer Intraseasonal Oscillation Over Southeast Asia. Frontiers in Climate, 2021, 3, .	2.8	5
149	SimCloud version 1.0: a simple diagnostic cloud scheme for idealized climate models. Geoscientific Model Development, 2021, 14, 2801-2826.	3.6	4
150	Influences of Local and Remote Conditions on Tropical Precipitation and Its Response to Climate Change. Journal of Climate, 2020, 33, 4045-4063.	3.2	2
151	Using Arctic ice mass balance buoys for evaluation of modelled ice energy fluxes. Geoscientific Model Development, 2020, 13, 4845-4868.	3.6	2
152	Development of super-ensemble techniques for ocean analyses: the Mediterranean Sea case. Natural Hazards and Earth System Sciences, 2016, 16, 1807-1819.	3.6	2
153	Frontiers in Climate Predictions and Projections. Frontiers in Climate, 2020, 2, .	2.8	2
154	Editorial: New Techniques for Improving Climate Models, Predictions and Projections. Frontiers in Climate, 2021, 3, .	2.8	2
155	Insight despite imperfection. Nature Geoscience, 2009, 2, 315-316.	12.9	1
156	Challenges and opportunities for improved understanding of regional climate dynamics. , 0, .		1
157	The response of pseudo-corals to ENSO in an isotope-enabled climate model. PAGES News, 2013, 21, 62-63.	0.1	1
158	Climate Crash: Abrupt Climate Change and what it Means for Our Future - by John D Cox. Geographical Journal, 2007, 173, 94-94.	3.1	0
159	From observations to forecasts – Part 9: what is decadal forecasting?. Weather, 2011, 66, 160-164.	0.7	0
160	Pacific temperature trends. Nature Climate Change, 2012, 2, 646-647.	18.8	0