A Radu Aricescu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8992194/publications.pdf

Version: 2024-02-01

65 8,022 45 papers citations h-index

77 77 11972
all docs docs citations times ranked citing authors

68

g-index

#	Article	IF	CITATIONS
1	A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1243-1250.	2.5	672
2	Crystal structure of a human GABAA receptor. Nature, 2014, 512, 270-275.	27.8	623
3	Single-particle cryo-EM at atomic resolution. Nature, 2020, 587, 152-156.	27.8	572
4	GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature, 2019, 565, 454-459.	27.8	386
5	Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nature Genetics, 2015, 47, 717-726.	21.4	310
6	Proteoglycan-Specific Molecular Switch for RPTP $\parallel f$ Clustering and Neuronal Extension. Science, 2011, 332, 484-488.	12.6	294
7	Glycoprotein Structural Genomics: Solving the Glycosylation Problem. Structure, 2007, 15, 267-273.	3.3	273
8	Cryo-EM structure of the human $\hat{l}\pm1\hat{l}^23\hat{l}^32$ GABAA receptor in a lipid bilayer. Nature, 2019, 565, 516-520.	27.8	264
9	Initiation of T cell signaling by CD45 segregation at 'close contacts'. Nature Immunology, 2016, 17, 574-582.	14.5	253
10	Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nature Chemical Biology, 2013, 9, 297-299.	8.0	204
11	Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nature Structural and Molecular Biology, 2008, 15, 567-572.	8.2	200
12	Heparan Sulfate Proteoglycans Are Ligands for Receptor Protein Tyrosine Phosphatase Ïf. Molecular and Cellular Biology, 2002, 22, 1881-1892.	2.3	192
13	An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nature Structural and Molecular Biology, 2010, 17, 398-402.	8.2	186
14	Anterograde C1ql1 Signaling Is Required in Order to Determine and Maintain a Single-Winner Climbing Fiber in the Mouse Cerebellum. Neuron, 2015, 85, 316-329.	8.1	161
15	Transsynaptic Modulation of Kainate Receptor Functions by C1q-like Proteins. Neuron, 2016, 90, 752-767.	8.1	150
16	Structural basis for GABAA receptor potentiation by neurosteroids. Nature Structural and Molecular Biology, 2017, 24, 986-992.	8.2	145
17	Astrocyte-Secreted Glypican 4 Regulates Release of Neuronal Pentraxin 1 from Axons to Induce Functional Synapse Formation. Neuron, 2017, 96, 428-445.e13.	8.1	140
18	Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1. Nature Structural and Molecular Biology, 2011, 18, 886-893.	8.2	135

#	Article	IF	CITATIONS
19	Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nature Protocols, 2018, 13, 2991-3017.	12.0	131
20	Structural basis for integration of GluD receptors within synaptic organizer complexes. Science, 2016, 353, 295-299.	12.6	128
21	Protein tyrosine phosphatases: structure–function relationships. FEBS Journal, 2008, 275, 867-882.	4.7	124
22	Structural insights into hedgehog ligand sequestration by the human hedgehog-interacting protein HHIP. Nature Structural and Molecular Biology, 2009, 16, 698-703.	8.2	123
23	Immunoglobulin superfamily cell adhesion molecules: zippers and signals. Current Opinion in Cell Biology, 2007, 19, 543-550.	5.4	121
24	Heparan Sulfate Organizes Neuronal Synapses through Neurexin Partnerships. Cell, 2018, 174, 1450-1464.e23.	28.9	118
25	Crystal Structure and Carbohydrate Analysis of Nipah Virus Attachment Glycoprotein: a Template for Antiviral and Vaccine Design. Journal of Virology, 2008, 82, 11628-11636.	3.4	109
26	Structural and Functional Studies of LRP6 Ectodomain Reveal a Platform for Wnt Signaling. Developmental Cell, 2011, 21, 848-861.	7.0	109
27	Structure of a Tyrosine Phosphatase Adhesive Interaction Reveals a Spacer-Clamp Mechanism. Science, 2007, 317, 1217-1220.	12.6	107
28	The Crystal Structure of ORF-9b, a Lipid Binding Protein from the SARS Coronavirus. Structure, 2006, 14, 1157-1165.	3.3	91
29	Structurally encoded intraclass differences in EphA clusters drive distinct cell responses. Nature Structural and Molecular Biology, 2013, 20, 958-964.	8.2	91
30	Structural Plasticity of Eph Receptor A4 Facilitates Cross-Class Ephrin Signaling. Structure, 2009, 17, 1386-1397.	3.3	86
31	A map of human PRDM9 binding provides evidence for novel behaviors of PRDM9 and other zinc-finger proteins in meiosis. ELife, 2017, 6, .	6.0	80
32	Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM. Nature Methods, 2021, 18, 60-68.	19.0	79
33	A synthetic synaptic organizer protein restores glutamatergic neuronal circuits. Science, 2020, 369, .	12.6	78
34	A GluD Coming-Of-Age Story. Trends in Neurosciences, 2017, 40, 138-150.	8.6	75
35	Crystal Structure of the GluR2 Amino-Terminal Domain Provides Insights into the Architecture and Assembly of Ionotropic Glutamate Receptors. Journal of Molecular Biology, 2009, 392, 1125-1132.	4.2	70
36	Carbohydrate and Domain Architecture of an Immature Antibody Glycoform Exhibiting Enhanced Effector Functions. Journal of Molecular Biology, 2009, 387, 1061-1066.	4.2	67

3

#	Article	IF	CITATIONS
37	Structural basis for extracellular cis and trans RPTP $\hat{I}f$ signal competition in synaptogenesis. Nature Communications, 2014, 5, 5209.	12.8	67
38	Chemical and Structural Analysis of an Antibody Folding Intermediate Trapped during Glycan Biosynthesis. Journal of the American Chemical Society, 2012, 134, 17554-17563.	13.7	65
39	Automation of large scale transient protein expression in mammalian cells. Journal of Structural Biology, 2011, 175, 209-215.	2.8	55
40	Structural Mechanism for Modulation of Synaptic Neuroligin-Neurexin Signaling by MDGA Proteins. Neuron, 2017, 95, 896-913.e10.	8.1	55
41	A Dual Binding Mode for RhoGTPases in Plexin Signalling. PLoS Biology, 2011, 9, e1001134.	5.6	54
42	Ventral closure, headfold fusion and definitive endoderm migration defects in mouse embryos lacking the fibronectin leucine-rich transmembrane protein FLRT3. Developmental Biology, 2008, 318, 184-193.	2.0	53
43	Inhibition of hybrid- and complex-type glycosylation reveals the presence of the GlcNAc transferase I-independent fucosylation pathway. Glycobiology, 2006, 16, 748-756.	2.5	52
44	Structure of the Repulsive Guidance Molecule (RGM)–Neogenin Signaling Hub. Science, 2013, 341, 77-80.	12.6	52
45	A structural perspective on GABAA receptor pharmacology. Current Opinion in Structural Biology, 2019, 54, 189-197.	5.7	51
46	Expression of recombinant glycoproteins in mammalian cells: towards an integrative approach to structural biology. Current Opinion in Structural Biology, 2013, 23, 345-356.	5.7	48
47	Targeting phosphatase-dependent proteoglycan switch for rheumatoid arthritis therapy. Science Translational Medicine, 2015, 7, 288ra76.	12.4	44
48	Glutamate receptor \hat{l} 2 serum antibodies in pediatric opsoclonus myoclonus ataxia syndrome. Neurology, 2018, 91, e714-e723.	1.1	43
49	Differential assembly diversifies GABAA receptor structures and signalling. Nature, 2022, 604, 190-194.	27.8	36
50	A point mutation in the ion conduction pore of AMPA receptor GRIA3 causes dramatically perturbed sleep patterns as well as intellectual disability. Human Molecular Genetics, 2017, 26, 3869-3882.	2.9	35
51	Chick PTPÏ, Regulates the Targeting of Retinal Axons within the Optic Tectum. Journal of Neuroscience, 2002, 22, 5024-5033.	3.6	34
52	Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Seminars in Cell and Developmental Biology, 2015, 37, 98-107.	5.0	31
53	Production of Cell Surface and Secreted Glycoproteins in Mammalian Cells. Methods in Molecular Biology, 2015, 1261, 115-127.	0.9	27
54	Isoform-specific binding of the tyrosine phosphatase ptp $\ddot{l}f$ to a ligand in developing muscle. Molecular and Cellular Neurosciences, 2003, 22, 37-48.	2.2	25

#	Article	IF	CITATIONS
55	Singleâ€dose immunisation with a multimerised SARSâ€CoVâ€2 receptor binding domain (RBD) induces an enhanced and protective response in mice. FEBS Letters, 2021, 595, 2323-2340.	2.8	24
56	A Computational Model for the AMPA Receptor Phosphorylation Master Switch Regulating Cerebellar Long-Term Depression. PLoS Computational Biology, 2016, 12, e1004664.	3.2	22
57	nandbâ€"number and brightness in R with a novel automatic detrending algorithm. Bioinformatics, 2017, 33, 3508-3510.	4.1	21
58	Simultaneous binding of Guidance Cues NET1 and RGM blocks extracellular NEO1 signaling. Cell, 2021, 184, 2103-2120.e31.	28.9	20
59	Disruption of $\hat{l}\pm$ -mannosidase processing induces non-canonical hybrid-type glycosylation. FEBS Letters, 2007, 581, 1963-1968.	2.8	18
60	PTPÏ f promotes retinal neurite outgrowth non-cell-autonomously. Journal of Neurobiology, 2005, 65, 59-71.	3.6	14
61	Receptor protein tyrosine phosphatase $\hat{l}\frac{1}{4}$: measuring where to stick. Biochemical Society Transactions, 2008, 36, 167-172.	3.4	14
62	Analysis of variable N-glycosylation site occupancy in glycoproteins by liquid chromatography electrospray ionization mass spectrometry. Analytical Biochemistry, 2007, 361, 149-151.	2.4	12
63	Site-specific covalent labeling of His-tag fused proteins with N-acyl-N-alkyl sulfonamide reagent. Bioorganic and Medicinal Chemistry, 2021, 30, 115947.	3.0	12
64	Preparation of recombinant fibronectin fragments for functional and structural studies. Methods in Molecular Biology, 2009, 522, 73-99.	0.9	12
65	High-throughput cloning, expression, and purification. , 2007, , 23-44.		O