Robert M Yantosca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8991257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. Journal of Geophysical Research, 2001, 106, 23073-23095.	3.3	1,927
2	Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy. Journal of Geophysical Research, 2004, 109, .	3.3	791
3	Constraints from210Pb and7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields. Journal of Geophysical Research, 2001, 106, 12109-12128.	3.3	637
4	Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	457
5	Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition. Atmospheric Chemistry and Physics, 2012, 12, 591-603.	1.9	371
6	An improved retrieval of tropospheric nitrogen dioxide from GOME. Journal of Geophysical Research, 2002, 107, ACH 9-1.	3.3	355
7	Background ozone over the United States in summer: Origin, trend, and contribution to pollution episodes. Journal of Geophysical Research, 2002, 107, ACH 11-1.	3.3	353
8	Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. Journal of Geophysical Research, 2007, 112, .	3.3	351
9	Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations. Journal of Geophysical Research, 2003, 108, .	3.3	331
10	Why do models overestimate surface ozone in the Southeast United States?. Atmospheric Chemistry and Physics, 2016, 16, 13561-13577.	1.9	320
11	Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the Clobal Ozone Monitoring Experiment. Journal of Geophysical Research, 2001, 106, 14539-14550.	3.3	318
12	Asian chemical outflow to the Pacific in spring: Origins, pathways, and budgets. Journal of Geophysical Research, 2001, 106, 23097-23113.	3.3	294
13	Atmospheric budget of acetone. Journal of Geophysical Research, 2002, 107, ACH 5-1-ACH 5-17.	3.3	290
14	Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES). Atmospheric Chemistry and Physics, 2010, 10, 855-876.	1.9	288
15	Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution. Atmospheric Chemistry and Physics, 2014, 14, 2679-2698.	1.9	259
16	Why are there large differences between models in global budgets of tropospheric ozone?. Journal of Geophysical Research, 2007, 112, .	3.3	257
17	Transatlantic transport of pollution and its effects on surface ozone in Europe and North America. Journal of Geophysical Research, 2002, 107, ACH 4-1.	3.3	253
18	Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations. Atmospheric Chemistry and Physics, 2010, 10, 9739-9760.	1.9	234

ROBERT M YANTOSCA

#	Article	IF	CITATIONS
19	Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter. Environmental Science & Technology, 2014, 48, 11109-11118.	4.6	233
20	An Improved Global Model for Air-Sea Exchange of Mercury: High Concentrations over the North Atlantic. Environmental Science & Technology, 2010, 44, 8574-8580.	4.6	225
21	Regional visibility statistics in the United States: Natural and transboundary pollution influences, and implications for the Regional Haze Rule. Atmospheric Environment, 2006, 40, 5405-5423.	1.9	223
22	Chemistry of hydrogen oxide radicals (HO _x) in the Arctic troposphere in spring. Atmospheric Chemistry and Physics, 2010, 10, 5823-5838.	1.9	220
23	Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model. Atmospheric Chemistry and Physics, 2015, 15, 10411-10433.	1.9	217
24	Regional CO pollution and export in China simulated by the high-resolution nested-grid GEOS-Chem model. Atmospheric Chemistry and Physics, 2009, 9, 3825-3839.	1.9	207
25	Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	206
26	Sources, distribution, and acidity of sulfate–ammonium aerosol in the Arctic in winter–spring. Atmospheric Environment, 2011, 45, 7301-7318.	1.9	206
27	Transpacific transport of Asian anthropogenic aerosols and its impact on surface air quality in the United States. Journal of Geophysical Research, 2006, 111, .	3.3	203
28	Inventory of boreal fire emissions for North America in 2004: Importance of peat burning and pyroconvective injection. Journal of Geophysical Research, 2007, 112, .	3.3	194
29	Air-sea exchange in the global mercury cycle. Global Biogeochemical Cycles, 2007, 21, .	1.9	193
30	Validation of OMI tropospheric NO2 observations during INTEX-B and application to constrain NOxNOx emissions over the eastern United States and Mexico. Atmospheric Environment, 2008, 42, 4480-4497.	1.9	190
31	Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide. Atmospheric Chemistry and Physics, 2010, 10, 977-996.	1.9	189
32	Inverting for emissions of carbon monoxide from Asia using aircraft observations over the western Pacific. Journal of Geophysical Research, 2003, 108, .	3.3	178
33	Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in situ observations. Journal of Geophysical Research, 2002, 107, ACH 4-1.	3.3	174
34	Global 3â€D landâ€oceanâ€atmosphere model for mercury: Presentâ€day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Global Biogeochemical Cycles, 2008, 22, .	1.9	174
35	HEMCO v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models. Geoscientific Model Development, 2014, 7, 1409-1417.	1.3	173
36	Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC ⁴ RS) and ground-based (SOAS) observations in the Southeast US. Atmospheric Chemistry and Physics, 2016, 16, 5969-5991.	1.9	173

ROBERT M YANTOSCA

#	Article	IF	CITATIONS
37	Global budget of ethane and regional constraints on U.S. sources. Journal of Geophysical Research, 2008, 113, .	3.3	164
38	Evaluating the contribution of changes in isoprene emissions to surface ozone trends over the eastern United States. Journal of Geophysical Research, 2005, 110, .	3.3	163
39	Atmospheric hydrogen cyanide (HCN): Biomass burning source, ocean sink?. Geophysical Research Letters, 2000, 27, 357-360.	1.5	159
40	North American pollution outflow and the trapping of convectively lifted pollution by upper-level anticyclone. Journal of Geophysical Research, 2005, 110, .	3.3	156
41	A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	147
42	A nested grid formulation for chemical transport over Asia: Applications to CO. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	141
43	Improved quantification of Chinese carbon fluxes using CO2/CO correlations in Asian outflow. Journal of Geophysical Research, 2004, 109, .	3.3	131
44	Spatial distributions of particle number concentrations in the global troposphere: Simulations, observations, and implications for nucleation mechanisms. Journal of Geophysical Research, 2010, 115, .	3.3	129
45	A global three-dimensional model analysis of the atmospheric budgets of HCN and CH3CN: Constraints from aircraft and ground measurements. Journal of Geophysical Research, 2003, 108, .	3.3	126
46	A tropospheric ozone maximum over the Middle East. Geophysical Research Letters, 2001, 28, 3235-3238.	1.5	122
47	Sources of tropospheric ozone along the Asian Pacific Rim: An analysis of ozonesonde observations. Journal of Geophysical Research, 2002, 107, ACH 3-1-ACH 3-19.	3.3	121
48	Modeling global atmospheric CO ₂ with improved emission inventories and CO ₂ production from the oxidation of other carbon species. Geoscientific Model Development, 2010, 3, 689-716.	1.3	117
49	Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC ⁴ RS aircraft observations over the southeast US.	1.9	99
50	GPS phase fluctuations in the equatorial region during sunspot minimum. Radio Science, 1997, 32, 1535-1550.	0.8	96
51	Estimating Fine Particulate Matter Component Concentrations and Size Distributions Using Satellite-Retrieved Fractional Aerosol Optical Depth: Part 2—A Case Study. Journal of the Air and Waste Management Association, 2007, 57, 1360-1369.	0.9	91
52	Evaluating a 3-D transport model of atmospheric CO ₂ using ground-based, aircraft, and space-borne data. Atmospheric Chemistry and Physics, 2011, 11, 2789-2803.	1.9	84
53	Transâ€Pacific transport of mercury. Journal of Geophysical Research, 2008, 113, .	3.3	83
54	Positive but variable sensitivity of August surface ozone to large-scale warming in the southeast United States. Nature Climate Change, 2015, 5, 454-458.	8.1	83

ROBERT M YANTOSCA

#	Article	IF	CITATIONS
55	Potential of observations from the Tropospheric Emission Spectrometer to constrain continental sources of carbon monoxide. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	77
56	Export of NOyfrom the North American boundary layer: Reconciling aircraft observations and global model budgets. Journal of Geophysical Research, 2004, 109, .	3.3	75
57	Public Health, Climate, and Economic Impacts of Desulfurizing Jet Fuel. Environmental Science & Technology, 2012, 46, 4275-4282.	4.6	74
58	Global budget of tropospheric ozone: Evaluating recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde observations. Atmospheric Environment, 2017, 167, 323-334.	1.9	74
59	Modeling dust and soluble iron deposition to the South Atlantic Ocean. Journal of Geophysical Research, 2010, 115, .	3.3	72
60	Development of a grid-independent GEOS-Chem chemical transport model (v9-02) as an atmospheric chemistry module for Earth system models. Geoscientific Model Development, 2015, 8, 595-602.	1.3	62
61	Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions. Atmospheric Chemistry and Physics, 2016, 16, 4369-4378.	1.9	60
62	GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications. Geoscientific Model Development, 2018, 11, 2941-2953.	1.3	58
63	Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH ₄ ObsPack) and satellite (GOSAT) observations. Atmospheric Chemistry and Physics, 2021, 21, 4637-4657.	1.9	55
64	Impact of 2050 climate change on North American wildfire: consequences for ozone air quality. Atmospheric Chemistry and Physics, 2015, 15, 10033-10055.	1.9	54
65	Stratospheric versus pollution influences on ozone at Bermuda: Reconciling past analyses. Journal of Geophysical Research, 2002, 107, ACH 1-1.	3.3	53
66	A three-dimensional global model study of atmospheric methyl chloride budget and distributions. Journal of Geophysical Research, 2004, 109, .	3.3	51
67	Radiative effect of clouds on tropospheric chemistry in a global three-dimensional chemical transport model. Journal of Geophysical Research, 2006, 111, .	3.3	49
68	Can a "state of the art―chemistry transport model simulate Amazonian tropospheric chemistry?. Journal of Geophysical Research, 2011, 116, .	3.3	47
69	Constraints on Asian and European sources of methane from CH4-C2H6-CO correlations in Asian outflow. Journal of Geophysical Research, 2004, 109, .	3.3	40
70	Factors driving mercury variability in the Arctic atmosphere and ocean over the past 30 years. Global Biogeochemical Cycles, 2013, 27, 1226-1235.	1.9	37
71	Using beryllium-7 to assess cross-tropopause transport in global models. Atmospheric Chemistry and Physics, 2016, 16, 4641-4659.	1.9	31
72	Simulation of radon-222 with the GEOS-Chem global model: emissions, seasonality, and convective transport. Atmospheric Chemistry and Physics, 2021, 21, 1861-1887.	1.9	25

#	Article	IF	CITATIONS
73	WRF-GC (v1.0): online coupling of WRF (v3.9.1.1) and GEOS-Chem (v12.2.1) for regional atmospheric chemistry modeling – Part 1: Description of the one-way model. Geoscientific Model Development, 2020, 13, 3241-3265.	1.3	25
74	Correction to "Global 3â€D landâ€oceanâ€atmosphere model for mercury: Presentâ€day versus preindustrial cycles and anthropogenic enrichment factors for depositionâ€. Global Biogeochemical Cycles, 2008, 22, .	1.9	24
75	Exploring CO pollution episodes observed at Rishiri Island by chemical weather simulations and AIRS satellite measurements: long-range transport of burning plumes and implications for emissions inventories. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 394.	0.8	23
76	Enabling Highâ€Performance Cloud Computing for Earth Science Modeling on Over a Thousand Cores: Application to the GEOSâ€Chem Atmospheric Chemistry Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002064.	1.3	23
77	Constraints on the sources of tropospheric ozone from210Pb-7Be-O3correlations. Journal of Geophysical Research, 2004, 109, .	3.3	21
78	Decreasing particle number concentrations in a warming atmosphere and implications. Atmospheric Chemistry and Physics, 2012, 12, 2399-2408.	1.9	17
79	Enabling Immediate Access to Earth Science Models through Cloud Computing: Application to the GEOS-Chem Model. Bulletin of the American Meteorological Society, 2019, 100, 1943-1960.	1.7	14
80	Sensitivity of photolysis frequencies and key tropospheric oxidants in a global model to cloud vertical distributions and optical properties. Journal of Geophysical Research, 2009, 114, .	3.3	9
81	Estimating numerical errors due to operator splitting in global atmospheric chemistry models: Transport and chemistry. Journal of Computational Physics, 2016, 305, 372-386.	1.9	5