
Matthias Altmeyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8990750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ADPâ€ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2022, 289, 7399-7410.	4.7	150
2	The CDK1-TOPBP1-PLK1 axis regulates the Bloom's syndrome helicase BLM to suppress crossover recombination in somatic cells. Science Advances, 2022, 8, eabk0221.	10.3	13
3	RNAi Screening Uncovers a Synthetic Sick Interaction between CtIP and the BARD1 Tumor Suppressor. Cells, 2022, 11, 643.	4.1	2
4	The Hammer and the Dance of Cell Cycle Control. Trends in Biochemical Sciences, 2021, 46, 301-314.	7.5	42
5	Mitochondrial NAD+ Controls Nuclear ARTD1-Induced ADP-Ribosylation. Molecular Cell, 2021, 81, 340-354.e5.	9.7	31
6	Combined inhibition of Aurora-A and ATR kinases results in regression of MYCN-amplified neuroblastoma. Nature Cancer, 2021, 2, 312-326.	13.2	50
7	Replicated chromatin curtails 53BP1 recruitment in BRCA1-proficient and BRCA1-deficient cells. Life Science Alliance, 2021, 4, e202101023.	2.8	14
8	RPA shields inherited DNA lesions for post-mitotic DNA synthesis. Nature Communications, 2021, 12, 3827.	12.8	16
9	TIRR inhibits the 53BP1-p53 complex to alter cell-fate programs. Molecular Cell, 2021, 81, 2583-2595.e6.	9.7	16
10	AHNAK controls 53BP1-mediated p53 response by restraining 53BP1 oligomerization and phase separation. Molecular Cell, 2021, 81, 2596-2610.e7.	9.7	37
11	Dealing with DNA lesions: When one cell cycle is not enough. Current Opinion in Cell Biology, 2021, 70, 27-36.	5.4	24
12	FAN1-MLH1 interaction affects repair of DNA interstrand cross-links and slipped-CAG/CTG repeats. Science Advances, 2021, 7, .	10.3	17
13	Biomolecular condensates at sites of DNA damage: More than just a phase. DNA Repair, 2021, 106, 103179.	2.8	51
14	When the RAP (80) fades out, you can hear BRCA1 RING. EMBO Reports, 2021, 22, e54116.	4.5	1
15	Activation of homologous recombination in G1 preserves centromeric integrity. Nature, 2021, 600, 748-753.	27.8	56
16	Ubiquitin Phosphorylation at Thr12 Modulates the DNA Damage Response. Molecular Cell, 2020, 80, 423-436.e9.	9.7	38
17	Sequential role of RAD51 paralog complexes in replication fork remodeling and restart. Nature Communications, 2020, 11, 3531.	12.8	63
18	CHD7 and 53BP1 regulate distinct pathways for the re-ligation of DNA double-strand breaks. Nature Communications, 2020, 11, 5775.	12.8	28

MATTHIAS ALTMEYER

#	Article	IF	CITATIONS
19	The Ubiquitin Ligase TRIP12 Limits PARP1 Trapping and Constrains PARP Inhibitor Efficiency. Cell Reports, 2020, 32, 107985.	6.4	68
20	The iron–sulfur helicase DDX11 promotes the generation of single-stranded DNA for CHK1 activation. Life Science Alliance, 2020, 3, e201900547.	2.8	15
21	Phase separation of 53 <scp>BP</scp> 1 determines liquidâ€like behavior of <scp>DNA</scp> repair compartments. EMBO Journal, 2019, 38, e101379.	7.8	294
22	Basal CHK1 activity safeguards its stability to maintain intrinsic S-phase checkpoint functions. Journal of Cell Biology, 2019, 218, 2865-2875.	5.2	29
23	Cells take a break when they are TIAR ed. EMBO Reports, 2019, 20, .	4.5	1
24	Efficient Pre-mRNA Cleavage Prevents Replication-Stress-Associated Genome Instability. Molecular Cell, 2019, 73, 670-683.e12.	9.7	62
25	Inherited DNA lesions determine G1 duration in the next cell cycle. Cell Cycle, 2018, 17, 24-32.	2.6	59
26	Chromatin modifiers Mdm2 and RNF2 prevent RNA:DNA hybrids that impair DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11311-E11320.	7.1	44
27	CtIP-Mediated Fork Protection Synergizes with BRCA1 to Suppress Genomic Instability upon DNA Replication Stress. Molecular Cell, 2018, 72, 568-582.e6.	9.7	93
28	Analysis of PARP inhibitor toxicity by multidimensional fluorescence microscopy reveals mechanisms of sensitivity and resistance. Nature Communications, 2018, 9, 2678.	12.8	90
29	The memory remains. Aging, 2018, 10, 516-517.	3.1	0
30	Replication-Coupled Dilution of H4K20me2 Guides 53BP1 to Pre-replicative Chromatin. Cell Reports, 2017, 19, 1819-1831.	6.4	93
31	Impaired oxidative stress response characterizes HUWE1-promoted X-linked intellectual disability. Scientific Reports, 2017, 7, 15050.	3.3	21
32	Cell Cycle Resolved Measurements of Poly(ADP-Ribose) Formation and DNA Damage Signaling by Quantitative Image-Based Cytometry. Methods in Molecular Biology, 2017, 1608, 57-68.	0.9	6
33	Interplay between Ubiquitin, SUMO, and Poly(ADP-Ribose) in the Cellular Response to Genotoxic Stress. Frontiers in Genetics, 2016, 7, 63.	2.3	40
34	A Mechanism for Controlled Breakage of Under-replicated Chromosomes during Mitosis. Developmental Cell, 2016, 39, 740-755.	7.0	105
35	PKCα and HMGB1 antagonistically control hydrogen peroxide-induced poly-ADP-ribose formation. Nucleic Acids Research, 2016, 44, 7630-7645.	14.5	15
36	Phase Separation: Linking Cellular Compartmentalization to Disease. Trends in Cell Biology, 2016, 26, 547-558.	7.9	291

MATTHIAS ALTMEYER

#	Article	IF	CITATIONS
37	53BP1 fosters fidelity of homology-directed DNA repair. Nature Structural and Molecular Biology, 2016, 23, 714-721.	8.2	194
38	Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Research, 2016, 44, 993-1006.	14.5	198
39	A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nature Communications, 2016, 7, 10660.	12.8	149
40	ldentifying ADP-ribosylation targets by chemical genetics. Translational Cancer Research, 2016, 5, S1163-S1166.	1.0	1
41	A lnc <scp>RNA</scp> to repair <scp>DNA</scp> . EMBO Reports, 2015, 16, 1413-1414.	4.5	18
42	Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nature Communications, 2015, 6, 8088.	12.8	463
43	The NBS1–Treacle complex controls ribosomal RNA transcription in response to DNA damage. Nature Cell Biology, 2014, 16, 792-803.	10.3	127
44	ATR Prohibits Replication Catastrophe by Preventing Global Exhaustion of RPA. Cell, 2014, 156, 374.	28.9	12
45	To spread or not to spread—chromatin modifications in response to DNA damage. Current Opinion in Genetics and Development, 2013, 23, 156-165.	3.3	46
46	ATR Prohibits Replication Catastrophe by Preventing Global Exhaustion of RPA. Cell, 2013, 155, 1088-1103.	28.9	714
47	Proteome-wide Identification of Poly(ADP-Ribosyl)ation Targets in Different Genotoxic Stress Responses. Molecular Cell, 2013, 52, 272-285.	9.7	315
48	The Chromatin Scaffold Protein SAFB1 Renders Chromatin Permissive for DNA Damage Signaling. Molecular Cell, 2013, 52, 206-220.	9.7	57
49	Guarding against Collateral Damage during Chromatin Transactions. Cell, 2013, 153, 1431-1434.	28.9	13
50	Addicted to PAR?. Cell Cycle, 2012, 11, 3916-3916.	2.6	1
51	TRIP12 and UBR5 Suppress Spreading of Chromatin Ubiquitylation at Damaged Chromosomes. Cell, 2012, 150, 697-709.	28.9	282
52	Inhibition of ADP Ribosylation Prevents and Cures <i>Helicobacter</i> -Induced Gastric Preneoplasia. Cancer Research, 2010, 70, 5912-5922.	0.9	34
53	PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Research, 2010, 38, 6350-6362.	14.5	226
54	Absence of Poly(ADP-Ribose) Polymerase 1 Delays the Onset of <i>Salmonella enterica</i> Serovar Typhimurium-Induced Gut Inflammation. Infection and Immunity, 2010, 78, 3420-3431.	2.2	29

MATTHIAS ALTMEYER

#	Article	IF	CITATIONS
55	Poly(ADP-Ribose) Polymerase 1 Participates in the Phase Entrainment of Circadian Clocks to Feeding. Cell, 2010, 142, 943-953.	28.9	309
56	Sumoylation of poly(ADPâ€ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function. FASEB Journal, 2009, 23, 3978-3989.	0.5	66
57	Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Research, 2009, 37, 3723-3738.	14.5	295
58	A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nature Structural and Molecular Biology, 2009, 16, 923-929.	8.2	382
59	Poly(ADP-ribose) polymerase 1 at the crossroad of metabolic stress and inflammation in aging. Aging, 2009, 1, 458-469.	3.1	68
60	Importin alpha binding and nuclear localization of PARP-2 is dependent on lysine 36, which is located within a predicted classical NLS. BMC Cell Biology, 2008, 9, 39.	3.0	13
61	Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation. International Journal of Biochemistry and Cell Biology, 2008, 40, 2274-2283.	2.8	56
62	Quantitative analysis of the binding affinity of poly(ADP-ribose) to specific binding proteins as a function of chain length. Nucleic Acids Research, 2007, 35, e143-e143.	14.5	133
63	Characterization of poly(ADP-ribose)–protein interactions using a novel microarray-based approach. Experimental Gerontology, 2007, 42, 141.	2.8	0
64	Quantitative analysis of PARP inhibitor toxicity by multidimensional fluorescence microscopy. Protocol Exchange, 0, , .	0.3	0