Wojciech Bal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8990726/publications.pdf

Version: 2024-02-01

38742 58581 8,294 197 50 citations g-index h-index papers

202 202 202 7414 docs citations times ranked citing authors all docs

82

#	Article	IF	CITATIONS
1	Evidence for a Long-Lived, Cu-Coupled and Oxygen-Inert Disulfide Radical Anion in the Assembly of Metallothionein-3 Cu(I) ₄ -Thiolate Cluster. Journal of the American Chemical Society, 2022, 144, 709-722.	13.7	10
2	Structures of Silver Fingers and a Pathway to Their Genotoxicity. Angewandte Chemie - International Edition, 2022, , .	13.8	12
3	Covalent Proximity Scanning of a Distal Cysteine to Target PI3Kα. Journal of the American Chemical Society, 2022, 144, 6326-6342.	13.7	27
4	Ni2+-Assisted Hydrolysis May Affect the Human Proteome; Filaggrin Degradation Ex Vivo as an Example of Possible Consequences. Frontiers in Molecular Biosciences, 2022, 9, 828674.	3.5	1
5	The Aggregation Pattern of Aβ _{1–40} is Altered by the Presence of <i>N</i> â€Truncated Aβ _{4–40} and/or Cu ^{II} in a Similar Way through Ionic Interactions. Chemistry - A European Journal, 2021, 27, 2798-2809.	3.3	12
6	Cirrhotic Liver of Liver Transplant Recipients Accumulate Silver and Co-Accumulate Copper. International Journal of Molecular Sciences, 2021, 22, 1782.	4.1	18
7	Probing the Structure and Function of the Cytosolic Domain of the Human Zinc Transporter ZnT8 with Nickel(II) Ions. International Journal of Molecular Sciences, 2021, 22, 2940.	4.1	2
8	Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study. European Biophysics Journal, 2021, 50, 411-427.	2.2	13
9	Copper($\langle scp \rangle ii \langle scp \rangle$) complex of N-truncated amyloid- \hat{l}^2 peptide bearing a His-2 motif as a potential receptor for phosphate anions. Dalton Transactions, 2021, 50, 2726-2730.	3.3	9
10	Incorporation of $\hat{I}^2 \hat{a} \in A$ lanine in Cu(II) ATCUN Peptide Complexes Increases ROS Levels, DNA Cleavage and Antiproliferative Activity**. Chemistry - A European Journal, 2021, 27, 18093-18102.	3.3	12
11	Ternary Cu ²⁺ Complexes of Human Serum Albumin and Glycyl- <scp>I</scp> -histidyl- <scp>I</scp> -lysine. Inorganic Chemistry, 2021, 60, 16927-16931.	4.0	9
12	Electrospray-Induced Mass Spectrometry Is Not Suitable for Determination of Peptidic Cu(II) Complexes. Journal of the American Society for Mass Spectrometry, 2021, 32, 2766-2776.	2.8	14
13	Intermediate Cu(II)-Thiolate Species in the Reduction of Cu(II)GHK by Glutathione: A Handy Chelate for Biological Cu(II) Reduction. Inorganic Chemistry, 2021, 60, 18048-18057.	4.0	13
14	Metal–Peptide Complexes—A Novel Class of Molecular Receptors for Electrochemical Phosphate Sensing. , 2021, 5, .		0
15	Kinetics of Cu(<scp>ii</scp>) complexation by ATCUN/NTS and related peptides: a gold mine of novel ideas for copper biology. Dalton Transactions, 2021, 51, 14-26.	3.3	10
16	Tuning Receptor Properties of Metal–Amyloid Beta Complexes. Studies on the Interaction between Ni(II)–Aβ _{5–9} and Phosphates/Nucleotides. Inorganic Chemistry, 2021, 60, 19448-19456.	4.0	2
17	The Subâ€picomolar Cu ²⁺ Dissociation Constant of Human Serum Albumin. ChemBioChem, 2020, 21, 331-334.	2.6	36
18	Formation of highly stable multinuclear Ag _n S _n clusters in zinc fingers disrupts their structure and function. Chemical Communications, 2020, 56, 1329-1332.	4.1	21

#	Article	IF	CITATIONS
19	Peptide Bond Cleavage by Ni(II) lons within the Nuclear Localization Signal Sequence. Chemistry and Biodiversity, 2020, 17, e1900652.	2.1	3
20	Exploration of the Potential Role for $\hat{Al^2}$ in Delivery of Extracellular Copper to Ctr1. Inorganic Chemistry, 2020, 59, 16952-16966.	4.0	6
21	Ternary Cu(II) Complex with GHK Peptide and Cis-Urocanic Acid as a Potential Physiologically Functional Copper Chelate. International Journal of Molecular Sciences, 2020, 21, 6190.	4.1	16
22	Aβ _{5–<i>x</i>} Peptides: N-Terminal Truncation Yields Tunable Cu(II) Complexes. Inorganic Chemistry, 2020, 59, 14000-14011.	4.0	17
23	The Reactions of H2O2 and GSNO with the Zinc Finger Motif of XPA. Not A Regulatory Mechanism, But No Synergy with Cadmium Toxicity. Molecules, 2020, 25, 4177.	3.8	6
24	Frontispiz: Key Intermediate Species Reveal the Copper(II)â€Exchange Pathway in Biorelevant ATCUN/NTS Complexes. Angewandte Chemie, 2020, 132, .	2.0	0
25	The Palladium(II) Complex of A $\hat{1}^24\hat{a}^3$ 16 as Suitable Model for Structural Studies of Biorelevant Copper(II) Complexes of N-Truncated Beta-Amyloids. International Journal of Molecular Sciences, 2020, 21, 9200.	4.1	4
26	Peptide bond cleavage in the presence of Ni-containing particles. Metallomics, 2020, 12, 649-653.	2.4	3
27	Key Intermediate Species Reveal the Copper(II)â€Exchange Pathway in Biorelevant ATCUN/NTS Complexes. Angewandte Chemie, 2020, 132, 11330-11335.	2.0	2
28	Hierarchical binding of copperII to N-truncated Aβ4–16 peptide. Metallomics, 2020, 12, 470-473.	2.4	12
29	Copper Transporters? Glutathione Reactivity of Products of Cu–Aβ Digestion by Neprilysin. Inorganic Chemistry, 2020, 59, 4186-4190.	4.0	13
30	Frontispiece: Key Intermediate Species Reveal the Copper(II)â€Exchange Pathway in Biorelevant ATCUN/NTS Complexes. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0
31	Stochastic or Not? Method To Predict and Quantify the Stochastic Effects on the Association Reaction Equilibria in Nanoscopic Systems. Journal of Physical Chemistry A, 2020, 124, 1421-1428.	2.5	20
32	Key Intermediate Species Reveal the Copper(II)â€Exchange Pathway in Biorelevant ATCUN/NTS Complexes. Angewandte Chemie - International Edition, 2020, 59, 11234-11239.	13.8	30
33	Nuclear translocation of silver ions and hepatocyte nuclear receptor impairment upon exposure to silver nanoparticles. Environmental Science: Nano, 2020, 7, 1373-1387.	4.3	16
34	Cu $<$ sup $>$ II $<$ /sup $>$ Binding Properties of N-Truncated A \hat{l}^2 Peptides: In Search of Biological Function. Inorganic Chemistry, 2019, 58, 13561-13577.	4.0	34
35	His6, His13, and His14 residues in Aî 2 1â \in "40 peptide significantly and specifically affect oligomeric equilibria. Scientific Reports, 2019, 9, 9449.	3.3	10
36	Ternary Zn(II) Complexes of Fluorescent Zinc Probes Zinpyr-1 and Zinbo-5 with the Low Molecular Weight Component of Exchangeable Cellular Zinc Pool. Inorganic Chemistry, 2019, 58, 14741-14751.	4.0	11

#	Article	IF	CITATIONS
37	Triggering Cu-coordination change in Cu(<scp>ii</scp>)-Ala-His-His by external ligands. Chemical Communications, 2019, 55, 8110-8113.	4.1	14
38	Coordinative unsaturated Cu ^I entities are crucial intermediates governing cell internalization of copper. A combined experimental ESI-MS and DFT study. Metallomics, 2019, 11, 1800-1804.	2.4	12
39	Oligopeptides Generated by Neprilysin Degradation of \hat{l}^2 -Amyloid Have the Highest Cu(II) Affinity in the Whole A \hat{l}^2 Family. Inorganic Chemistry, 2019, 58, 932-943.	4.0	22
40	Nâ€Terminal Cuâ€Binding Motifs (Xxxâ€Zzzâ€His, Xxxâ€His) and Their Derivatives: Chemistry, Biology and Medicinal Applications. Chemistry - A European Journal, 2018, 24, 8029-8041.	3.3	99
41	The Cu(II) affinity of the N-terminus of human copper transporter CTR1: Comparison of human and mouse sequences. Journal of Inorganic Biochemistry, 2018, 182, 230-237.	3.5	27
42	The N-terminus of hepcidin is a strong and potentially biologically relevant Cu(II) chelator. Inorganica Chimica Acta, 2018, 472, 76-81.	2.4	19
43	Cu transfer from amyloid-î² _{4–16} to metallothionein-3: the role of the neurotransmitter glutamate and metallothionein-3 Zn(<scp>ii</scp>)-load states. Chemical Communications, 2018, 54, 12634-12637.	4.1	20
44	The N-terminal 14-mer model peptide of human Ctr1 can collect Cu(<scp>ii</scp>) from albumin. Implications for copper uptake by Ctr1. Metallomics, 2018, 10, 1723-1727.	2.4	37
45	Gly-His-Thr-Asp-Amide, an Insulin-Activating Peptide from the Human Pancreas Is a Strong Cu(II) but a Weak Zn(II) Chelator. Inorganic Chemistry, 2018, 57, 15507-15516.	4.0	12
46	Interplay between Copper, Neprilysin, and N-Truncation of \hat{l}^2 -Amyloid. Inorganic Chemistry, 2018, 57, 6193-6197.	4.0	29
47	Nickel(<scp>ii</scp>)-promoted specific hydrolysis of zinc finger proteins. Metallomics, 2018, 10, 1089-1098.	2.4	8
48	Ternary Zn(II) Complexes of FluoZin-3 and the Low Molecular Weight Component of the Exchangeable Cellular Zinc Pool. Inorganic Chemistry, 2018, 57, 9826-9838.	4.0	23
49	Copper(II) Complexes with ATCUN Peptide Analogues: Studies on Redox Activity in Different Solutions. Journal of the Electrochemical Society, 2017, 164, G77-G81.	2.9	19
50	Dysregulated Zn2+ homeostasis impairs cardiac type-2 ryanodine receptor and mitsugumin 23 functions, leading to sarcoplasmic reticulum Ca2+ leakage. Journal of Biological Chemistry, 2017, 292, 13361-13373.	3.4	19
51	Cysteine and glutathione trigger the Cu–Zn swap between Cu(<scp>ii</scp>)-amyloid-β ₄₋₁₆ peptide and Zn ₇ -metallothionein-3. Chemical Communications, 2017, 53, 11634-11637.	4.1	24
52	Cu(II) Binding to the Peptide Ala-His-His, a Chimera of the Canonical Cu(II)-Binding Motifs Xxx-His and Xxx-Zzz-His. Inorganic Chemistry, 2017, 56, 14870-14879.	4.0	23
53	The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease. Acta Neuropathologica Communications, 2017, 5, 53.	5.2	77
54	Numerical Simulations Reveal Randomness of Cu(II) Induced A \hat{l}^2 Peptide Dimerization under Conditions Present in Glutamatergic Synapses. PLoS ONE, 2017, 12, e0170749.	2.5	19

#	Article	IF	Citations
55	Revisiting Mitochondrial pH with an Improved Algorithm for Calibration of the Ratiometric 5(6)-carboxy-SNARF-1 Probe Reveals Anticooperative Reaction with H+ Ions and Warrants Further Studies of Organellar pH. PLoS ONE, 2016, 11, e0161353.	2.5	18
56	Resistance of Cu(Aβ4 – 16) to Copper Capture by Metallothioneinâ€3 Supports a Function for the Aβ4 – 42 Peptide as a Synaptic Cu II Scavenger. Angewandte Chemie, 2016, 128, 8375-8378.	2.0	6
57	Resistance of Cu(Aβ4 – 16) to Copper Capture by Metallothioneinâ€3 Supports a Function for the Aβ4 – 42 Peptide as a Synaptic Cu ^{II} Scavenger. Angewandte Chemie - International Edition, 2016, 55, 8235-8238.	13.8	51
58	On the ability of $CuA\hat{l}^21$ -x peptides to form ternary complexes: Neurotransmitter glutamate is a competitor while not a ternary partner. Journal of Inorganic Biochemistry, 2016, 158, 5-10.	3.5	8
59	Revised stability constant, spectroscopic properties and binding mode of Zn(II) to FluoZin-3, the most common zinc probe in life sciences. Journal of Inorganic Biochemistry, 2016, 161, 107-114.	3.5	29
60	Cu(II) complexation does not affect oxytocin action on pregnant human myometrium in vitro. Reproductive Toxicology, 2016, 59, 60-65.	2.9	3
61	Interactions of α-Factor-1, a Yeast Pheromone, and Its Analogue with Copper(II) Ions and Low-Molecular-Weight Ligands Yield Very Stable Complexes. Inorganic Chemistry, 2016, 55, 7829-7831.	4.0	19
62	Tuning the Redox Properties of Copper(II) Complexes with Amyloid- \hat{l}^2 Peptides. Journal of the Electrochemical Society, 2016, 163, G196-G199.	2.9	28
63	Copper Exchange and Redox Activity of a Prototypical 8-Hydroxyquinoline: Implications for Therapeutic Chelation. Inorganic Chemistry, 2016, 55, 7317-7319.	4.0	23
64	Metal assisted peptide bond hydrolysis: Chemistry, biotechnology and toxicological implications. Coordination Chemistry Reviews, 2016, 327-328, 166-187.	18.8	48
65	Selenocysteine containing analogues of Atx1-based peptides protect cells from copper ion toxicity. Organic and Biomolecular Chemistry, 2016, 14, 6979-6984.	2.8	6
66	Filaggrin inhibits generation of CD1a neolipid antigens by house dust mite–derived phospholipase. Science Translational Medicine, 2016, 8, 325ra18.	12.4	77
67	Unbound position II in MXCXXC metallochaperone model peptides impacts metal binding mode and reactivity: Distinct similarities to whole proteins. Journal of Inorganic Biochemistry, 2016, 159, 29-36.	3.5	12
68	13 Genotoxicity of Metal Ions: Chemical Insights. , 2015, , 319-374.		0
69	A Functional Role for Aβ in Metal Homeostasis? Nâ€Truncation and Highâ€Affinity Copper Binding. Angewandte Chemie - International Edition, 2015, 54, 10460-10464.	13.8	102
70	Coordination Properties of Dithiobutylamine (DTBA), a Newly Introduced Protein Disulfide Reducing Agent. Inorganic Chemistry, 2015, 54, 596-606.	4.0	19
71	Unusual Zn(II) Affinities of Zinc Fingers of Poly(ADP-ribose) Polymerase 1 (PARP-1) Nuclear Protein. Chemical Research in Toxicology, 2015, 28, 191-201.	3.3	19
72	Ni(<scp>ii</scp>) ions cleave and inactivate human alpha-1 antitrypsin hydrolytically, implicating nickel exposure as a contributing factor in pathologies related to antitrypsin deficiency. Metallomics, 2015, 7, 596-604.	2.4	12

#	Article	IF	CITATIONS
73	Atomic Resolution Structure of a Protein Prepared by Non-Enzymatic His-Tag Removal. Crystallographic and NMR Study of GmSPI-2 Inhibitor. PLoS ONE, 2014, 9, e106936.	2.5	8
74	Human Annexins A1, A2, and A8 as Potential Molecular Targets for Ni(II) Ions. Chemical Research in Toxicology, 2014, 27, 1996-2009.	3.3	15
75	Sequence-Specific Cu(II)-Dependent Peptide Bond Hydrolysis: Similarities and Differences with the Ni(II)-Dependent Reaction. Inorganic Chemistry, 2014, 53, 4639-4646.	4.0	11
76	cis-Urocanic acid as a potential nickel(<scp>ii</scp>) binding molecule in the human skin. Dalton Transactions, 2014, 43, 3196-3201.	3.3	20
77	Dual catalytic role of the metal ion in nickel-assisted peptide bond hydrolysis. Journal of Inorganic Biochemistry, 2014, 136, 107-114.	3.5	9
78	Factors Influencing Compact–Extended Structure Equilibrium in Oligomers of Aβ1–40 Peptide—An Ion Mobility Mass Spectrometry Study. Journal of Molecular Biology, 2014, 426, 2871-2885.	4.2	37
79	The impact of synthetic analogs of histidine on copper(II) and nickel(II) coordination properties to an albumin-like peptide. Possible leads towards new metallodrugs. Journal of Inorganic Biochemistry, 2014, 139, 1-8.	3.5	7
80	Binding of transition metal ions to albumin: Sites, affinities and rates. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 5444-5455.	2.4	350
81	Ternary complex formation and competition quench fluorescence of ZnAF family zinc sensors. Metallomics, 2013, 5, 1483.	2.4	24
82	Revised Coordination Model and Stability Constants of Cu(II) Complexes of Tris Buffer. Inorganic Chemistry, 2013, 52, 13927-13933.	4.0	52
83	Cu(II) complex formation by ACES buffer. Journal of Inorganic Biochemistry, 2013, 129, 58-61.	3.5	13
84	Cu(II) Affinity for the Alzheimer's Peptide: Tyrosine Fluorescence Studies Revisited. Analytical Chemistry, 2013, 85, 1501-1508.	6.5	148
85	Sequence-specific Ni(II)-dependent peptide bond hydrolysis for protein engineering: Active sequence optimization. Journal of Inorganic Biochemistry, 2013, 127, 99-106.	3.5	12
86	Mixed Ligand Cu2+Complexes of a Model Therapeutic with Alzheimer's Amyloid-β Peptide and Monoamine Neurotransmitters. Inorganic Chemistry, 2013, 52, 4303-4318.	4.0	54
87	Selective control of Cu(II) complex stability in histidine peptides by \hat{I}^2 -alanine. Journal of Inorganic Biochemistry, 2013, 119, 85-89.	3.5	24
88	Effect of <scp>d</scp> -Amino Acid Substitutions on Ni(II)-Assisted Peptide Bond Hydrolysis. Inorganic Chemistry, 2013, 52, 2422-2431.	4.0	17
89	Affinity of copper and zinc ions to proteins and peptides related to neurodegenerative conditions (A \hat{l}^2 ,) Tj ETQq1	1 0.78431 18.8	.4 rgBT /Ove 120
90	Application of Ni(II)-Assisted Peptide Bond Hydrolysis to Non-Enzymatic Affinity Tag Removal. PLoS ONE, 2012, 7, e36350.	2.5	23

#	Article	IF	Citations
91	Oxidative Stress Level in the Testes of Mice and Rats during Nickel Intoxication. Scientific World Journal, The, 2012, 2012, 1-5.	2.1	15
92	Thermodynamic study of Cu2+ binding to the DAHK and GHK peptides by isothermal titration calorimetry (ITC) with the weaker competitor glycine. Journal of Biological Inorganic Chemistry, 2012, 17, 37-47.	2.6	97
93	The Final Frontier of pH and the Undiscovered Country Beyond. PLoS ONE, 2012, 7, e45832.	2.5	28
94	The C2H2 zinc finger transcription factors are likely targets for Ni(ii) toxicity. Metallomics, 2011, 3, 1227.	2.4	18
95	Zn(II) Complexes of Glutathione Disulfide: Structural Basis of Elevated Stabilities. Inorganic Chemistry, 2011, 50, 72-85.	4.0	36
96	Selective peptide bond hydrolysis of cysteine peptides in the presence of Ni(II) ions. Journal of Inorganic Biochemistry, 2011, 105, 10-16.	3.5	26
97	Salivary histatin-5, a physiologically relevant ligand for Ni(II) ions. Journal of Inorganic Biochemistry, 2011, 105, 1220-1225.	3.5	19
98	Genotoxicity of metal ions: chemical insights. Metal lons in Life Sciences, 2011, 8, 319-73.	2.8	9
99	Effect of Common Buffers and Heterocyclic Ligands on the Binding of Cu(II) at the Multimetal Binding Site in Human Serum Albumin. Bioinorganic Chemistry and Applications, 2010, 2010, 1-7.	4.1	15
100	Recent Advances in Molecular Toxicology of Cadmium and Nickel. Advances in Molecular Toxicology, 2010, 4, 85-126.	0.4	14
101	Sequence-Specific Ni(II)-Dependent Peptide Bond Hydrolysis for Protein Engineering. Combinatorial Library Determination of Optimal Sequences. Journal of the American Chemical Society, 2010, 132, 3355-3366.	13.7	60
102	A Direct Determination of the Dissociation Constant for the Cu(II) Complex of Amyloid \hat{l}^2 1 \hat{a} °40 Peptide. Chemical Research in Toxicology, 2010, 23, 336-340.	3.3	56
103	The Cu(II)/Aβ/Human Serum Albumin Model of Control Mechanism for Copper-Related Amyloid Neurotoxicity. Chemical Research in Toxicology, 2010, 23, 298-308.	3.3	49
104	Sequence-Specific Ni(II)-Dependent Peptide Bond Hydrolysis for Protein Engineering: Reaction Conditions and Molecular Mechanism. Inorganic Chemistry, 2010, 49, 6636-6645.	4.0	61
105	Biophysical Analysis of the Interaction of Toxic Metal lons and Oxidants with the Zinc Finger Domain of XPA. Methods in Molecular Biology, 2010, 649, 399-410.	0.9	14
106	13. Genotoxicity of Metal lons: Chemical Insights. Metal lons in Life Sciences, 2010, , 319-373.	1.0	11
107	Spectroscopic and thermodynamic determination of three distinct binding sites for Co(II) ions in human serum albuminâ†. Journal of Inorganic Biochemistry, 2009, 103, 1005-1013.	3.5	83
108	Physiological levels of glutathione enhance Zn(II) binding by a Cys4 zinc finger. Biochemical and Biophysical Research Communications, 2009, 389, 265-268.	2.1	17

#	Article	IF	Citations
109	The Cu(ii) complex of ${\rm A}\hat{\rm I}^2$ 40 peptide in ammonium acetate solutions. Evidence for ternary species formation. Chemical Communications, 2009, , 1374.	4.1	29
110	Comparative studies of coordination properties of puromycin and puromycin aminonucleoside towards copper(II) ions. Journal of Inorganic Biochemistry, 2008, 102, 46-52.	3.5	2
111	Reaction of the XPA Zinc Finger withS-Nitrosoglutathione. Chemical Research in Toxicology, 2008, 21, 386-392.	3.3	16
112	Monomethylarsonous Acid Destroys a Tetrathiolate Zinc Finger Much More Efficiently than Inorganic Arsenite: Mechanistic Considerations and Consequences for DNA Repair Inhibition. Chemical Research in Toxicology, 2008, 21, 600-606.	3.3	79
113	Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. Journal of Experimental Botany, 2008, 59, 2205-2219.	4.8	117
114	A diadenosine 5',5"-P1P4 tetraphosphate (Ap4A) hydrolase from Arabidopsis thaliana that is activated preferentially by Mn2+ ions Acta Biochimica Polonica, 2008, 55, 151-160.	0.5	13
115	The binding constant for amyloid $\hat{A^2}40$ peptide interaction with human serum albumin. Biochemical and Biophysical Research Communications, 2007, 364, 714-718.	2.1	61
116	A zinc-finger like metal binding site in the nucleosome. FEBS Letters, 2007, 581, 1409-1416.	2.8	14
117	Quantitative electrospray ionization mass spectrometry of zinc finger oxidation: The reaction of XPA zinc finger with H2O2. Analytical Biochemistry, 2007, 369, 226-231.	2.4	20
118	Ap4A is not an efficient Zn(II) binding agent. A concerted potentiometric, calorimetric and NMR study. Journal of Inorganic Biochemistry, 2007, 101, 758-763.	3.5	6
119	Human serum albumin coordinates Cu(II) at its N-terminal binding site with 1\^ApM affinity. Journal of Biological Inorganic Chemistry, 2007, 12, 913-918.	2.6	130
120	Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis. Toxicology Letters, 2006, 162, 29-42.	0.8	195
121	Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. Journal of Experimental Botany, 2006, 57, 2173-2182.	4.8	93
122	Sequence-specific Ni(II)-dependent peptide bond hydrolysis in a peptide containing threonine and histidine residues Acta Biochimica Polonica, 2006, 53, 721-727.	0.5	33
123	Sequence-specific Ni(II)-dependent peptide bond hydrolysis in a peptide containing threonine and histidine residues. Acta Biochimica Polonica, 2006, 53, 721-7.	0.5	5
124	Modeling of Biological Ligand Binding. , 2005, , 728-736.		0
125	Determination of the stability constants and oxidation susceptibility of nickel(II) complexes with 2′-deoxyguanosine 5′-triphosphate and l-histidine. Journal of Inorganic Biochemistry, 2005, 99, 737-746.	3.5	16
126	Interactions of transition metal ions with His-containing peptide models of histone H2A. Journal of Molecular Liquids, 2005, 118, 119-129.	4.9	26

#	Article	IF	CITATIONS
127	Interactions of Transition Metal Ions with His-Containing Peptide Models of Histone H2A. ChemInform, 2005, 36, no.	0.0	О
128	Cu(II) complexation by "non-coordinating―N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES) Ţ	j <u></u> g <u>T</u> Qq0 0	0 rgBT /Ove
129	Oxidative reactivity of Cu–TESHHK– and its alanine analogues. Dalton Transactions, 2005, , 1985.	3.3	5
130	Overexpression of genes involved in phytochelatin biosynthesis in Escherichia coli: effects on growth, cadmium accumulation and thiol level Acta Biochimica Polonica, 2005, 52, 109-116.	0.5	12
131	Interactions of Zn(II) Ions with Three His-Containing Peptide Models of Histone H2A. Bioinorganic Chemistry and Applications, 2004, 2, 125-140.	4.1	13
132	Interaction of selenium compounds with zinc finger proteins involved in DNA repair. FEBS Journal, 2004, 271, 3190-3199.	0.2	79
133	Redox modifications of the C-terminal cysteine residue cause structural changes in S100A1 and S100B proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1742, 191-201.	4.1	50
134	Studies of Zinc(II) and Nickel(II) Complexes of GSH, GSSG and Their Analogs Shed More Light on Their Biological Relevance. Bioinorganic Chemistry and Applications, 2004, 2, 293-305.	4.1	56
135	Coordination mode and oxidation susceptibility of nickel(II) complexes with $2\hat{a}\in^2$ -deoxyguanosine $5\hat{a}\in^2$ -monophosphate and I-histidine. Journal of Inorganic Biochemistry, 2004, 98, 1770-1777.	3.5	30
136	A formula for correlating p K a values determined in D 2 O and H 2 O. Journal of Inorganic Biochemistry, 2004, 98, 161-166.	3.5	438
137	Contrasting Effects of Metal lons on S-Nitrosoglutathione, Related to Coordination Equilibria:  GSNO Decomposition Assisted by Ni(II) vs Stability Increase in the Presence of Zn(II) and Cd(II). Chemical Research in Toxicology, 2004, 17, 392-403.	3.3	15
138	Co(II) and Cd(II) Substitute for Zn(II) in the Zinc Finger Derived from the DNA Repair Protein XPA, Demonstrating a Variety of Potential Mechanisms of Toxicity. Chemical Research in Toxicology, 2004, 17, 1452-1458.	3.3	149
139	Coordination Properties of Tris(2-carboxyethyl)phosphine, a Newly Introduced Thiol Reductant, and Its Oxide. Inorganic Chemistry, 2003, 42, 1994-2003.	4.0	111
140	The Octapeptidic End of the C-Terminal Tail of Histone H2A Is Cleaved Off in Cells Exposed to Carcinogenic Nickel(II). Chemical Research in Toxicology, 2003, 16, 1555-1559.	3.3	50
141	Mechanism of Nickel Assault on the Zinc Finger of DNA Repair Protein XPA. Chemical Research in Toxicology, 2003, 16, 242-248.	3.3	81
142	Cu(II) complexation potentiates arginine vasopressin action on nonpregnant human myometrium in vitro. Contraception, 2003, 67, 477-483.	1.5	9
143	Correlations between Complexation Modes and Redox Activities of Ni(II)â°'GSH Complexes. Chemical Research in Toxicology, 2003, 16, 855-864.	3.3	55
144	Structure–function relationships in glutathione and its analogues. Organic and Biomolecular Chemistry, 2003, 1, 3885-3890.	2.8	42

#	Article	IF	Citations
145	May GSH and l-His contribute to intracellular binding of zinc? Thermodynamic and solution structural study of a ternary complex. Chemical Communications, 2003, , 704-705.	4.1	81
146	The role of chromatin damage in nickel-induced carcinogenesis. A review of recent developments. Journal of Environmental Monitoring, 2003, 5, 183-187.	2.1	71
147	Copper(ii) binding by kanamycin A and hydrogen peroxide activation by resulting complexes. New Journal of Chemistry, 2002, 26, 1507-1514.	2.8	43
148	The binding of Ni(ii) ions to terminally blocked hexapeptides derived from the metal binding -ESHH-motif of histone H2A. Dalton Transactions RSC, 2002, , 4296-4306.	2.3	38
149	Induction of oxidative DNA damage by carcinogenic metals. Toxicology Letters, 2002, 127, 55-62.	0.8	171
150	Short peptides are not reliable models of thermodynamic and kinetic properties of the N-terminal metal binding site in serum albumin. FEBS Journal, 2002, 269, 1323-1331.	0.2	94
151	DNA and RNA damage by Cu(II)-amikacin complex. FEBS Journal, 2002, 269, 5547-5556.	0.2	32
152	Potentiometric and spectroscopic studies of the interaction of Cu(II) ions with the hexapeptides AcThrAlaSerHisHisLysNH2, AcThrGluAlaHisHisLysNH2, AcThrGluSerAlaHisLysNH2 and AcThrGluSerHisAlaLysNH2, models of C-terminal tail of histone H2A. Inorganica Chimica Acta, 2002, 339, 60-70.	2.4	36
153	Molecular Mechanism of Hydrogen Peroxide Conversion and Activation by Cu(II)-Amikacin Complexes. Chemical Research in Toxicology, 2001, 14, 1353-1362.	3.3	23
154	Copper(II)–lincomycin: complexation pattern and oxidative activity. Journal of Inorganic Biochemistry, 2001, 84, 189-200.	3.5	24
155	Differential zinc and DNA binding by partial peptides of human protamine HP2. Molecular and Cellular Biochemistry, 2001, 222, 97-106.	3.1	16
156	Stray Cu(II) May Cause Oxidative Damage When Coordinated to the -TESHHK- Sequence Derived from the C-Terminal Tail of Histone H2A. Chemical Research in Toxicology, 2001, 14, 1177-1183.	3.3	28
157	Coordination of heavy metals by dithiothreitol, a commonly used thiol group protectant. Journal of Inorganic Biochemistry, 2001, 84, 77-88.	3.5	188
158	Differential zinc and DNA binding by partial peptides of human protamine HP2., 2001,, 97-106.		1
159	Lead effects on protamine-DNA binding. American Journal of Industrial Medicine, 2000, 38, 324-329.	2.1	55
160	Molecular models in nickel carcinogenesis. Journal of Inorganic Biochemistry, 2000, 79, 213-218.	3.5	97
161	Ni(II) Specifically Cleaves the C-Terminal Tail of the Major Variant of Histone H2A and Forms an Oxidative Damage-Mediating Complex with the Cleaved-Off Octapeptide. Chemical Research in Toxicology, 2000, 13, 616-624.	3.3	119
162	Induction of a Secondary Structure in the N-Terminal Pentadecapeptide of Human Protamine HP2 through Ni(II) Coordination. An NMR Study. Chemical Research in Toxicology, 2000, 13, 823-830.	3.3	36

#	Article	IF	Citations
163	Lead Interaction with Human Protamine (HP2) as a Mechanism of Male Reproductive Toxicity. Chemical Research in Toxicology, 2000, 13, 594-600.	3.3	71
164	Effects of Ni(II) and Cu(II) on DNA interaction with the N-terminal sequence of human protamine P2: enhancement of binding and mediation of oxidative DNA strand scission and base damage. Carcinogenesis, 1999, 20, 893-898.	2.8	87
165	Specific structure–stability relations in metallopeptides. Coordination Chemistry Reviews, 1999, 184, 319-346.	18.8	424
166	Introduction of \hat{l}_{\pm} -hydroxymethylserine residues in a peptide sequence results in the strongest peptidic, albumin-like, copper(II) chelator known to date. Journal of the Chemical Society Dalton Transactions, 1999, , 109-110.	1.1	19
167	Interaction of Nickel(II) with Histones:In VitroBinding of Nickel(II) to the Core Histone Tetramer. Archives of Biochemistry and Biophysics, 1999, 364, 161-166.	3.0	37
168	Studies on Oxidative Mechanisms of Metal-Induced Carcinogenesis., 1999,, 193-208.		2
169	Kanamycin revisited: a combined potentiometric and spectroscopic study of copper(II) binding to kanamycin B. Inorganica Chimica Acta, 1998, 275-276, 541-545.	2.4	25
170	How non-bonding amino acid side-chains may enormously increase the stability of a Cu(II)—peptide complex. Inorganica Chimica Acta, 1998, 283, 1-11.	2.4	47
171	Multi-metal binding site of serum albumin. Journal of Inorganic Biochemistry, 1998, 70, 33-39.	3.5	267
172	Copper(II) binding to geneticin, a gentamycin analog. Journal of Inorganic Biochemistry, 1998, 71, 129-134.	3 . 5	22
173	Co-ordination of copper(II) by amikacin. Complexation equilibria in solution and oxygen activation by the resulting complexes â€. Journal of the Chemical Society Dalton Transactions, 1998, , 153-160.	1.1	28
174	Interactions of Nickel(II) with Histones: Interactions of Nickel(II) with CH3CO-Thr-Glu-Ser-His-His-Lys-NH2, a Peptide Modeling the Potential Metal Binding Site in the "C-Tail― Region of Histone H2A. Chemical Research in Toxicology, 1998, 11, 1014-1023.	3.3	97
175	Binding of Nickel(II) and Copper(II) to the N-Terminal Sequence of Human Protamine HP2. Chemical Research in Toxicology, 1997, 10, 906-914.	3.3	95
176	Mediation of Oxidative DNA Damage by Nickel(II) and Copper(II) Complexes with the N-Terminal Sequence of Human Protamine HP2. Chemical Research in Toxicology, 1997, 10, 915-921.	3.3	61
177	Axial Hydrophobic Fence in Highly-Stable Ni(II) Complex of Des-Angiotensinogen N-Terminal Peptide. Journal of the American Chemical Society, 1996, 118, 4727-4728.	13.7	73
178	Interactions of Nickel(II) with Histones:  Enhancement of 2â€~-Deoxyguanosine Oxidation by Ni(II) Complexes with CH3CO-Cys-Ala-Ile-His-NH2, a Putative Metal Binding Sequence of Histone H3. Chemical Research in Toxicology, 1996, 9, 535-540.	3.3	55
179	Characterization of pNiXa, a serpin ofXenopus laevis oocytes and embryos, and its histidine-rich, Ni(II)-binding domain. Molecular Reproduction and Development, 1996, 44, 507-524.	2.0	24
180	Copper(II) interactions with an experimental antiviral agent, 1-deoxynojirimycin, and oxygen activation by resulting complexes. Journal of Inorganic Biochemistry, 1996, 64, 231-246.	3.5	17

#	Article	IF	CITATIONS
181	Competition between the terminal amino and imidazole nitrogen donors for coordination to Ni(II) ions in oligopeptides. Inorganica Chimica Acta, 1995, 231, 7-12.	2.4	48
182	Cu(II) binding by angiotensin II fragments: Asp-Arg-Val-Tyr-Ile-His and Arg-Val-Tyr-Ile-His. Competition between amino group and imidazole nitrogens in anchoring of metal ions. Journal of Inorganic Biochemistry, 1995, 57, 235-247.	3. 5	28
183	Interactions of Nickel(II) with Histones. Stability and Solution Structure of Complexes with CH3CO-Cys-Ala-Ile-His-NH2, a Putative Metal Binding Sequence of Histone H3. Chemical Research in Toxicology, 1995, 8, 683-692.	3.3	62
184	A dramatic change in the interaction of Cu(II) with bio-peptides promoted by SDSâ€"a model for complex formation on a membrane surface. Journal of Inorganic Biochemistry, 1994, 55, 41-52.	3.5	18
185	Dioxygen-induced decarboxylation and hydroxylation of [Nill(glycyl-glycyl-L-histidine)] occurs via Nilll: X-ray crystal structure of [Nill(glycyl-glycyl-α-hydroxy-D,L-histamine)]·3H2O. Journal of the Chemical Society Chemical Communications, 1994, , 1889-1890.	2.0	68
186	Unusually strong binding of Ca2+ ions by the novel antibiotic squalestatin-1. Journal of the Chemical Society Chemical Communications, 1994, , 555.	2.0	3
187	Complexes of Cu(II) with Asn-Ser-Phe-Arg-Tyr-NH2; an example of metal ion-promoted conformational organization which results in exceptionally high complex stability. Journal of Inorganic Biochemistry, 1993, 52, 79-87.	3.5	55
188	Potentiometric and spectroscopic studies of the Cu(II) complexes of Ala-Arg8-vasopressin and oxytocin: Two vasopressin-like peptides. Journal of Inorganic Biochemistry, 1992, 45, 193-202.	3.5	36
189	A thermodynamic and spectroscopic study of the complexes of the undecapeptide Substance P, of its N-terminal fragment and of model pentapeptides containing two prolyl residues with copper ions. Journal of the Chemical Society Dalton Transactions, 1991, , 1651.	1.1	11
190	The unusual behavior of the inhibitor $S(+)(1-amino-2-phenylethyl)$ phosphonic acid towards carboxypeptidase A. Journal of Inorganic Biochemistry, 1990, 40, 227-235.	3.5	15
191	Nickel(II) complexes of hydroxamic analogues of aminoacids. Journal of Inorganic Biochemistry, 1990, 38, 9-16.	3.5	19
192	Complex formation by peptides containing more than one prolyl residue; some unexpected trends with biological implications. Journal of the Chemical Society Chemical Communications, 1990, , 391.	2.0	3
193	A study of the comparative donor properties to Cu II of the terminal amino and imidazole nitrogens in peptides. Journal of the Chemical Society Dalton Transactions, 1990, , 3565.	1.1	67
194	LHRH interaction with Zn(II) ions. Journal of Inorganic Biochemistry, 1989, 37, 135-139.	3.5	9
195	Complex-forming properties of L- \hat{l} ±-alanine hydroxamic acid (2-amino-N-hydroxypropanamide). Journal of the Chemical Society Dalton Transactions, 1989, , 2247-2251.	1.1	51
196	Copper(II) complexes with some tetrapeptides containing the â€~break-point' prolyl residue in the third position. Journal of the Chemical Society Dalton Transactions, 1988, , 1357-1360.	1.1	36
197	Structures of Silver Fingers and a Pathway to Their Genotoxicity. Angewandte Chemie, 0, , .	2.0	0