Erik Dubberke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8990351/publications.pdf

Version: 2024-02-01

125 papers

7,986 citations

71102 41 h-index 87 g-index

126 all docs

126 docs citations

126 times ranked

7250 citing authors

#	Article	IF	CITATIONS
1	Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clinical Infectious Diseases, 2018, 66, e1-e48.	5.8	1,695
2	Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clinical Infectious Diseases, 2018, 66, 987-994.	5.8	900
3	Burden of Clostridium difficile on the Healthcare System. Clinical Infectious Diseases, 2012, 55, S88-S92.	5.8	489
4	Clostridium difficileAssociated Disease in a Setting of Endemicity: Identification of Novel Risk Factors. Clinical Infectious Diseases, 2007, 45, 1543-1549.	5.8	241
5	Strategies to Prevent <i>Clostridium difficile</i> Infections in Acute Care Hospitals: 2014 Update. Infection Control and Hospital Epidemiology, 2014, 35, 628-645.	1.8	175
6	Strategies to Prevent <i>Clostridium difficile</i> Infections in Acute Care Hospitals. Infection Control and Hospital Epidemiology, 2008, 29, S81-S92.	1.8	172
7	Short- and Long-Term Attributable Costs of Clostridium difficile-Associated Disease in Nonsurgical Inpatients. Clinical Infectious Diseases, 2008, 46, 497-504.	5.8	168
8	Impact of Clinical Symptoms on Interpretation of Diagnostic Assays for Clostridium difficile Infections. Journal of Clinical Microbiology, 2011, 49, 2887-2893.	3.9	168
9	Review of Current Literature on the Economic Burden of <i>Clostridium difficile</i> Infection. Infection Control and Hospital Epidemiology, 2009, 30, 57-66.	1.8	167
10	Attributable Outcomes of Endemic <i>Clostridium difficile</i> è–associated Disease in Nonsurgical Patients. Emerging Infectious Diseases, 2008, 14, 1031-1038.	4.3	148
11	The Morbidity, Mortality, and Costs Associated with Clostridium difficile Infection. Infectious Disease Clinics of North America, 2015, 29, 123-134.	5.1	148
12	Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection in Patients at Increased Risk for Recurrence. Clinical Infectious Diseases, 2018, 67, 649-656.	5.8	143
13	Safety and Durability of RBX2660 (Microbiota Suspension) for Recurrent <i>Clostridium difficile</i> Infection: Results of the PUNCH CD Study. Clinical Infectious Diseases, 2016, 62, 596-602.	5.8	140
14	Prevalence of Clostridium difficile environmental contamination and strain variability in multiple health care facilities. American Journal of Infection Control, 2007, 35, 315-318.	2.3	137
15	Epidemiological and economic burden of Clostridium difficile in the United States: estimates from a modeling approach. BMC Infectious Diseases, 2016, 16, 303.	2.9	131
16	Assessment of Healthcare Worker Protocol Deviations and Self-Contamination During Personal Protective Equipment Donning and Doffing. Infection Control and Hospital Epidemiology, 2017, 38, 1077-1083.	1.8	128
17	Infections after Transplantation of Bone Marrow or Peripheral Blood Stem Cells from Unrelated Donors. Biology of Blood and Marrow Transplantation, 2016, 22, 359-370.	2.0	127
18	Evaluation of Clostridium difficile–Associated Disease Pressure as a Risk Factor for C difficile–Associated Disease. Archives of Internal Medicine, 2007, 167, 1092.	3.8	119

#	Article	IF	CITATIONS
19	Results From a Randomized, Placebo-Controlled Clinical Trial of a RBX2660—A Microbiota-Based Drug for the Prevention of Recurrent Clostridium difficile Infection. Clinical Infectious Diseases, 2018, 67, 1198-1204.	5.8	96
20	Development and Validation of a <i>Clostridium difficile</i> Infection Risk Prediction Model. Infection Control and Hospital Epidemiology, 2011, 32, 360-366.	1.8	89
21	Infections in Hematopoietic Cell Transplant Recipients: Results From the Organ Transplant Infection Project, a Multicenter, Prospective, Cohort Study. Open Forum Infectious Diseases, 2017, 4, ofx050.	0.9	89
22	Multicenter Study of <i>Clostridium difficile</i> Infection Rates from 2000 to 2006. Infection Control and Hospital Epidemiology, 2010, 31, 1030-1037.	1.8	85
23	Clostridium difficile infection in solid organ transplant recipients. Current Opinion in Organ Transplantation, 2008, 13, 592-600.	1.6	82
24	Epidemiology of infections following haploidentical peripheral blood hematopoietic cell transplantation. Transplant Infectious Disease, 2017, 19, e12629.	1.7	75
25	Comparative Genomics of Antibiotic-Resistant Uropathogens Implicates Three Routes for Recurrence of Urinary Tract Infections. MBio, 2019, 10, .	4.1	73
26	<i>Clostridium difficile</i> >â€associated disease in allogeneic hematopoietic stemâ€eell transplant recipients: risk associations, protective associations, and outcomes. Clinical Transplantation, 2010, 24, 192-198.	1.6	72
27	Metabolomic networks connect host-microbiome processes to human Clostridioides difficile infections. Journal of Clinical Investigation, 2019, 129, 3792-3806.	8.2	70
28	Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Reports, 2022, 39, 110649.	6.4	64
29	Multicenter Study of Surveillance for Hospital-Onset <i>Clostridium difficile</i> Infection by the Use of <i>ICD-9-CM</i> Diagnosis Codes. Infection Control and Hospital Epidemiology, 2010, 31, 262-268.	1.8	63
30	Clostridium difficile in the ICU. Chest, 2011, 140, 1643-1653.	0.8	62
31	Antibodies to Toxin B Are Protective Against <i>Clostridium difficile</i> Infection Recurrence. Clinical Infectious Diseases, 2016, 63, 730-734.	5.8	60
32	Clearance of Vancomycin-Resistant Enterococcus Concomitant With Administration of a Microbiota-Based Drug Targeted at Recurrent Clostridium difficile Infection. Open Forum Infectious Diseases, 2016, 3, ofw133.	0.9	57
33	Cytomegalovirus viremia, disease, and impact on relapse in T-cell replete peripheral blood haploidentical hematopoietic cell transplantation with post-transplant cyclophosphamide. Haematologica, 2016, 101, e465-e468.	3.5	54
34	A Compendium of Strategies to Prevent Healthcare-Associated Infections in Acute Care Hospitals: 2014 Updates. American Journal of Infection Control, 2014, 42, 820-828.	2.3	53
35	Pathogenicity Locus, Core Genome, and Accessory Gene Contributions to <i>Clostridium difficile</i> Virulence. MBio, 2017, 8, .	4.1	51
36	Impact of Clostridium difficile recurrence on hospital readmissions. American Journal of Infection Control, 2015, 43, 318-322.	2.3	49

#	Article	IF	CITATIONS
37	Risk Factors for Acquisition and Loss of Clostridium difficile Colonization in Hospitalized Patients. Antimicrobial Agents and Chemotherapy, 2015, 59, 4533-4543.	3.2	49
38	The Impact of ICD-9-CM Code Rank Order on the Estimated Prevalence of Clostridium difficile Infections. Clinical Infectious Diseases, 2011, 53, 20-25.	5.8	48
39	Incidence and mortality associated with Clostridium difficile infection at a Japanese tertiary care center. Anaerobe, 2014, 25, 5-10.	2.1	48
40	Clostridioides (Clostridium) difficile infection burden in Japan: A multicenter prospective study. Anaerobe, 2019, 60, 102011.	2.1	47
41	<i>Clostridium difficile</i> infection: The scope of the problem. Journal of Hospital Medicine, 2012, 7, S1-4.	1.4	44
42	Attributable Inpatient Costs of Recurrent <i>Clostridium difficile</i> Infections. Infection Control and Hospital Epidemiology, 2014, 35, 1400-1407.	1.8	44
43	Procedure-specific surgical site infection incidence varies widely within certain National Healthcare Safety Network surgery groups. American Journal of Infection Control, 2015, 43, 617-623.	2.3	41
44	A Randomized, Placebo-controlled Trial of Fidaxomicin for Prophylaxis of ⟨i⟩Clostridium difficile–⟨ i⟩associated Diarrhea in Adults Undergoing Hematopoietic Stem Cell Transplantation. Clinical Infectious Diseases, 2019, 68, 196-203.	5.8	41
45	Acute meningoencephalitis caused by adenovirus serotype 26. Journal of NeuroVirology, 2006, 12, 235-240.	2.1	40
46	Severity of Clostridium difficile–Associated Disease (CDAD) in Allogeneic Stem Cell Transplant Recipients: Evaluation of a CDAD Severity Grading System. Infection Control and Hospital Epidemiology, 2007, 28, 208-211.	1.8	40
47	The burden of clostridium difficile infection: estimates of the incidence of CDI from U.S. Administrative databases. BMC Infectious Diseases, 2016, 16, 177.	2.9	39
48	Durable reduction of Clostridioides difficile infection recurrence and microbiome restoration after treatment with RBX2660: results from an open-label phase 2 clinical trial. BMC Infectious Diseases, 2022, 22, 245.	2.9	38
49	Diagnosis of <i>Clostridium difficile </i> Infection. JAMA Internal Medicine, 2015, 175, 1801.	5.1	37
50	Phenotypic and Genotypic Analysis of Clostridium difficile Isolates: a Single-Center Study. Journal of Clinical Microbiology, 2014, 52, 4260-4266.	3.9	35
51	Management of <i>Clostridioides</i> (formerly <i>Clostridium</i>) <i>difficile</i> infection (CDI) in solid organ transplant recipients: Guidelines from the American Society of Transplantation Community of Practice. Clinical Transplantation, 2019, 33, e13564.	1.6	35
52	<i>Clostridium difficile</i> infection increases acute and chronic morbidity and mortality. Infection Control and Hospital Epidemiology, 2019, 40, 65-71.	1.8	35
53	Epidemiology and outcomes of <i>Clostridium difficile</i> infection in allogeneic hematopoietic cell and lung transplant recipients. Transplant Infectious Disease, 2018, 20, e12855.	1.7	32
54	Identification of Medicare Recipients at Highest Risk for Clostridium difficile Infection in the US by Population Attributable Risk Analysis. PLoS ONE, 2016, 11, e0146822.	2.5	31

#	Article	IF	CITATIONS
55	Pitfalls Associated With the Use of Molecular Diagnostic Panels in the Diagnosis of Cryptococcal Meningitis. Open Forum Infectious Diseases, 2017, 4, ofx242.	0.9	30
56	Increasing Age Has Limited Impact on Risk of Clostridium difficile Infection in an Elderly Population. Open Forum Infectious Diseases, 2018, 5, ofy160.	0.9	26
57	Multicenter Study of the Impact of Community-Onset Clostridium difficile Infection on Surveillance for C. difficile Infection. Infection Control and Hospital Epidemiology, 2009, 30, 518-525.	1.8	25
58	Randomized Controlled Trial to Determine the Impact of Probiotic Administration on Colonization With Multidrug-Resistant Organisms in Critically Ill Patients. Infection Control and Hospital Epidemiology, 2015, 36, 1451-1454.	1.8	24
59	Risk for Clostridium difficile Infection After Allogeneic Hematopoietic Cell Transplant Remains Elevated in the Postengraftment Period. Transplantation Direct, 2017, 3, e145.	1.6	22
60	Cytomegalovirus Infections of the Stem Cell Transplant Recipient and Hematologic Malignancy Patient. Infectious Disease Clinics of North America, 2019, 33, 485-500.	5.1	21
61	Randomized Controlled Trial of Oral Vancomycin Treatment in Clostridioides difficile-Colonized Patients. MSphere, 2021, 6, .	2.9	20
62	Implementing Automated Surveillance for Tracking Clostridium difficile Infection at Multiple Healthcare Facilities. Infection Control and Hospital Epidemiology, 2012, 33, 305-308.	1.8	19
63	Cytomegalovirus infections in lung and hematopoietic cell transplant recipients in the Organ Transplant Infection Prevention and Detection Study: A multiâ€year, multicenter prospective cohort study. Transplant Infectious Disease, 2018, 20, e12877.	1.7	19
64	Epidemiology of Left Ventricular Assist Device Infections: Findings From a Large Nonregistry Cohort. Clinical Infectious Diseases, 2021, 72, 190-197.	5.8	19
65	Hospital-Associated <i>Clostridium difficile</i> Infection: Is It Necessary to Track Community-Onset Disease?. Infection Control and Hospital Epidemiology, 2009, 30, 332-337.	1.8	18
66	Strategies for prevention of Clostridium difficile infection. Journal of Hospital Medicine, 2012, 7, S14-S17.	1.4	18
67	Thirty-Day Readmissions in Hospitalized Patients Who Received Bezlotoxumab With Antibacterial Drug Treatment for Clostridium difficile Infection. Clinical Infectious Diseases, 2017, 65, 1218-1221.	5.8	18
68	Impact of Amoxicillin-Clavulanate followed by Autologous Fecal Microbiota Transplantation on Fecal Microbiome Structure and Metabolic Potential. MSphere, 2018, 3, .	2.9	17
69	Prevention of Healthcare-Associated Clostridium difficile Infection: What Works?. Infection Control and Hospital Epidemiology, 2010, 31, S38-S41.	1.8	16
70	<i>Clostridium difficile</i> Infection Among Veterans Health Administration Patients. Infection Control and Hospital Epidemiology, 2015, 36, 1038-1045.	1.8	16
71	Multi-omics investigation of Clostridioides difficile-colonized patients reveals pathogen and commensal correlates of C. difficile pathogenesis. ELife, 2022, 11 , .	6.0	16
72	<i>Clostridium difficile</i> control measures: current and future methods for prevention. Expert Review of Anti-Infective Therapy, 2018, 16, 121-131.	4.4	15

#	Article	IF	CITATIONS
73	Clostridium difficile infection in solid organ transplant recipients. Current Opinion in Infectious Diseases, 2014, 27, 336-341.	3.1	14
74	An Evaluation of Food as a Potential Source for Clostridium difficile Acquisition in Hospitalized Patients. Infection Control and Hospital Epidemiology, 2016, 37, 1401-1407.	1.8	13
75	Clostridium difficileâ€"Diagnostic and Clinical Challenges. Clinical Chemistry, 2016, 62, 310-314.	3.2	13
76	Evaluation of Correlation between Pretest Probability for Clostridium difficile Infection and Clostridium difficile Enzyme Immunoassay Results. Journal of Clinical Microbiology, 2017, 55, 596-605.	3.9	13
77	Comparing intervention strategies for reducing Clostridioides difficile transmission in acute healthcare settings: an agent-based modeling study. BMC Infectious Diseases, 2020, 20, 799.	2.9	13
78	Persisting uropathogenic Escherichia coli lineages show signatures of niche-specific within-host adaptation mediated by mobile genetic elements. Cell Host and Microbe, 2022, 30, 1034-1047.e6.	11.0	13
79	Efficacy of Bezlotoxumab in Participants Receiving Metronidazole, Vancomycin, or Fidaxomicin for Treatment of Clostridioides (Clostridium) difficile Infection. Open Forum Infectious Diseases, 2020, 7, ofaa157.	0.9	12
80	Clostridioides difficile Infections in Inpatient Pediatric Oncology Patients: A Cohort Study Evaluating Risk Factors and Associated Outcomes. Journal of the Pediatric Infectious Diseases Society, 2021, 10, 302-308.	1.3	12
81	Repeat SARS-CoV-2 testing after recovery. Is a pretransplant PCR necessary?. American Journal of Transplantation, 2021, 21, 3206-3207.	4.7	11
82	<i>Clostridium difficile</i> colonization among patients with clinically significant diarrhea and no identifiable cause of diarrhea. Infection Control and Hospital Epidemiology, 2018, 39, 1330-1333.	1.8	10
83	Impact of an electronic hard-stop clinical decision support tool to limit repeat <i>Clostridioides difficile</i> toxin enzyme immunoassay testing on test utilization. Infection Control and Hospital Epidemiology, 2019, 40, 1423-1426.	1.8	10
84	Efficacy and Safety of RBX2660 for the Prevention of Recurrent Clostridium difficile Infection: Results. of the PUNCH CD 2 Trial. Open Forum Infectious Diseases, 2016, 3, .	0.9	9
85	Frequency of Instrument, Environment, and Laboratory Technologist Contamination during Routine Diagnostic Testing of Infectious Specimens. Journal of Clinical Microbiology, 2018, 56, .	3.9	9
86	American Society for Transplantation and Cellular Therapy Series: #5—Management of Clostridioides difficile Infection in Hematopoietic Cell Transplant Recipients. Transplantation and Cellular Therapy, 2022, 28, 225-232.	1.2	9
87	Clostridium Difficile Infection in the United States: A National Study Assessing Preventive Practices Used and Perceptions of Practice Evidence. Infection Control and Hospital Epidemiology, 2015, 36, 969-971.	1.8	8
88	Influence of Diagnostic Method on Outcomes in Phase 3 Clinical Trials of Bezlotoxumab for the Prevention of Recurrent Clostridioides difficile Infection: A Post Hoc Analysis of MODIFY I/II. Open Forum Infectious Diseases, 2019, 6, .	0.9	8
89	A Tiered Approach for Preventing <i>Clostridioides difficile</i> Infection. Annals of Internal Medicine, 2019, 171, S45.	3.9	8
90	Bezlotoxumab Is Associated With a Reduction in Cumulative Inpatient-Days: Analysis of the Hospitalization Data From the MODIFY I and II Clinical Trials. Open Forum Infectious Diseases, 2018, 5, ofy218.	0.9	7

#	Article	IF	Citations
91	Performance of laboratory tests for detection for Clostridioides difficile: A multicenter prospective study in Japan. Anaerobe, 2019, 60, 102107.	2.1	7
92	Hospital roommates and development of health care–onset Clostridium difficile infection. American Journal of Infection Control, 2014, 42, 1109-1111.	2.3	6
93	Quantitative Results of a National Intervention to Prevent <i>Clostridioides difficile</i> Infection. Annals of Internal Medicine, 2019, 171, S52.	3.9	6
94	Antibiotic stewardship teams and <i>Clostridioides difficile</i> practices in United States hospitals: A national survey in The Joint Commission antibiotic stewardship standard era. Infection Control and Hospital Epidemiology, 2020, 41, 1-6.	1.8	6
95	Impact of no-touch ultraviolet light room disinfection systems on Clostridioides difficile infections. American Journal of Infection Control, 2021, 49, 646-648.	2.3	6
96	A randomized controlled trial of <i>Lactobacillus rhamnosus</i> GG on antimicrobial-resistant organism colonization. Infection Control and Hospital Epidemiology, 2022, 43, 167-173.	1.8	6
97	Healthcare Worker Self-Contamination During Standard and Ebola Virus Disease Personal Protective Equipment Doffing. Open Forum Infectious Diseases, 2016, 3, .	0.9	5
98	The role of chronic suppressive antibiotics therapy in superficial drive line infection relapse of left ventricular assist devices: A retrospective cohort from a tertiary care center. Transplant Infectious Disease, 2021, 23, e13686.	1.7	5
99	Current management of Clostridioides (Clostridium) difficile infection in adults: a summary of recommendations from the 2017 IDSA/SHEA clinical practice guideline. Polish Archives of Internal Medicine, 2018, 129, 189-198.	0.4	4
100	An Evaluation of the Prevalence of Vancomycin-Resistant <i>Enterococci</i> (VRE) and Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA) in Hospital Food. Infection Control and Hospital Epidemiology, 2017, 38, 1373-1375.	1.8	3
101	How clean is clean enough? An observational pilot study to assess central sterilization processing efficacy with adenosine triphosphate levels. American Journal of Infection Control, 2020, 48, 420-422.	2.3	3
102	Strategies to prevent adverse outcomes following <i>Clostridioides difficile</i> infection in the elderly. Expert Review of Anti-Infective Therapy, 2020, 18, 203-217.	4.4	3
103	Ceftolozane-Tazobactam Activity against Phylogenetically Diverse Clostridium difficile Strains. Antimicrobial Agents and Chemotherapy, 2015, 59, 7084-7085.	3.2	2
104	Efficacy of Bezlotoxumab in Patients Receiving Metronidazole, Vancomycin, or Fidaxomicin for Treatment of Clostridium difficile Infection (CDI). Open Forum Infectious Diseases, 2016, 3, .	0.9	2
105	Assessment of antibiotic-resistant organism transmission among rooms of hospitalized patients, healthcare personnel, and the hospital environment utilizing surrogate markers and selective bacterial cultures. Infection Control and Hospital Epidemiology, 2020, 41, 539-546.	1.8	2
106	Reply to Jaber et al Infection Control and Hospital Epidemiology, 2008, 29, 189-190.	1.8	1
107	Reply to Goorhuis et al Clinical Infectious Diseases, 2008, 47, 430-431.	5.8	1
108	Impact of Amoxicillin/Clavulanate and Autologous Fecal Microbiota Transplantation (FMT) on the Fecal Microbiome and Resistome. Open Forum Infectious Diseases, 2016, 3, .	0.9	1

#	Article	IF	CITATIONS
109	Reducing Fluoroquinolone Use Is a Key Step in Controlling the Burden of Clostridium difficile Infection. Gastroenterology, 2017, 153, 606-607.	1.3	1
110	Can prediction scores be used to identify patients at risk of Clostridioides difficile infection?. Current Opinion in Gastroenterology, 2021, Publish Ahead of Print, 7-14.	2.3	1
111	Infections in Oncology Patients. , 0, , 315-324.		O
112	1796Recovery of Clostridium difficile, Vancomycin Resistant Enterococcus and Methicillin Resistant Staphylococcus aureus from the Food of Hospitalized Patients. Open Forum Infectious Diseases, 2014, 1, S62-S62.	0.9	0
113	113Procedure-specific Surgical Site Infection (SSI) Prevalence Widely Varies within Certain NHSN (National Healthcare Safety Network) Surgery Groups. Open Forum Infectious Diseases, 2014, 1, S8-S9.	0.9	0
114	1657Who Seeks a Fecal Microbiota Transplant for Recurrent C. difficile Infection?: Patient Profile of the PUNCH CD Study. Open Forum Infectious Diseases, 2014, 1, S443-S443.	0.9	0
115	1028The Prevalence of Clostridium difficile Infection (CDI) is Highly Correlated with the Prevalence of Surgical Site Infection (SSI). Open Forum Infectious Diseases, 2014, 1, S301-S301.	0.9	0
116	Epidemiology of Initial and Recurrent Episodes of Infection in Left Ventricular Assist Device Recipients. Open Forum Infectious Diseases, $2016, 3, .$	0.9	0
117	Effect of an Electronic Hard-Stop Intervention to Prevent Repeat Clostridium difficile Toxin Testing on Test Utilization and Clinical Outcomes. Open Forum Infectious Diseases, 2016, 3, .	0.9	0
118	Quantitative Responses of Taxonomic Composition and Resistance Gene Abundance in the Gut Microbiota to Fecal Microbiota Transplantation. Open Forum Infectious Diseases, 2016, 3, .	0.9	0
119	Lack of Evidence for Toxin Immunoassay-Negative Patients as a Significant Source of Clostridium difficile Transmission at an Academic Medical Center. Open Forum Infectious Diseases, 2016, 3, .	0.9	0
120	1950. Prevention of Recurrent Clostridium difficile at Six Months Following Treatment With Microbiota-Based Therapy RBX2660: Durability Results From a Phase 2 Open-Label Study. Open Forum Infectious Diseases, 2018, 5, S562-S563.	0.9	0
121	Reply to Million et al. Clinical Infectious Diseases, 2018, 67, 1799-1800.	5.8	0
122	OUP accepted manuscript. journal of applied laboratory medicine, The, 2021, , .	1.3	0
123	Clostridium Difficile-Associated Disease in Allogeneic Transplant Patients Blood, 2004, 104, 5095-5095.	1.4	0
124	A woman from Honduras with a painful forearm and fever. American Journal of Tropical Medicine and Hygiene, 2008, 78, 697-8.	1.4	0
125	Kidney Transplantation from COVID-19 Deceased Donors: New Hope on the Horizon. American Journal of Nephrology, 2022, , 1-2.	3.1	0