James W Gillespie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8990265/publications.pdf

Version: 2024-02-01

840776 1058476 14 378 11 14 citations h-index g-index papers 14 14 14 547 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phage-Displayed Mimotopes of SARS-CoV-2 Spike Protein Targeted to Authentic and Alternative Cellular Receptors. Viruses, 2022, 14, 384.	3.3	10
2	Combinatorial Avidity Selection of Mosaic Landscape Phages Targeted at Breast Cancer Cellsâ€"An Alternative Mechanism of Directed Molecular Evolution. Viruses, 2019, 11, 785.	3.3	11
3	Evolution of a Landscape Phage Library in a Mouse Xenograft Model of Human Breast Cancer. Viruses, 2019, 11, 988.	3.3	12
4	Phage-derived protein-mediated targeted chemotherapy of pancreatic cancer. Journal of Drug Targeting, 2018, 26, 505-515.	4.4	7
5	Paradigm shift in bacteriophage-mediated delivery of anticancer drugs: from targeted †magic bullets†to self-navigated †magic missilesâ€. Expert Opinion on Drug Delivery, 2017, 14, 373-384.	5.0	22
6	Promiscuous tumor targeting phage proteins. Protein Engineering, Design and Selection, 2016, 29, 93-103.	2.1	13
7	Selection of Lung Cancer-Specific Landscape Phage for Targeted Drug Delivery. Combinatorial Chemistry and High Throughput Screening, 2016, 19, 412-422.	1.1	9
8	Combinatorial synthesis and screening of cancer cell-specific nanomedicines targeted via phage fusion proteins. Frontiers in Microbiology, 2015, 6, 628.	3.5	18
9	Paclitaxel-Loaded PEG-PE–Based Micellar Nanopreparations Targeted with Tumor-Specific Landscape Phage Fusion Protein Enhance Apoptosis and Efficiently Reduce Tumors. Molecular Cancer Therapeutics, 2014, 13, 2864-2875.	4.1	31
10	Enhanced tumor delivery and antitumor activity in vivo of liposomal doxorubicin modified with MCF-7-specific phage fusion protein. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 421-430.	3.3	50
11	Selection of pancreatic cancer cell-binding landscape phages and their use in development of anticancer nanomedicines. Protein Engineering, Design and Selection, 2014, 27, 235-243.	2.1	25
12	Targeted Delivery of siRNA into Breast Cancer Cells via Phage Fusion Proteins. Molecular Pharmaceutics, 2013, 10, 551-559.	4.6	46
13	Delivery of siRNA into breast cancer cells via phage fusion protein-targeted liposomes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 315-323.	3.3	85
14	Landscape phage fusion protein-mediated targeting of nanomedicines enhances their prostate tumor cell association and cytotoxic efficiency. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 538-546.	3.3	39