## Ken William S Ashwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8989868/publications.pdf

Version: 2024-02-01

47 papers 617 citations

840776 11 h-index 23 g-index

47 all docs

47 docs citations

47 times ranked

604 citing authors

| #  | Article                                                                                                                                                                                          | IF          | CITATIONS      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|
| 1  | Magnetic resonance imaging and diffusion tensor imaging reconstruction of connectomes in a macropod, the quokka ( <i>Setonix brachyurus</i> ). Journal of Comparative Neurology, 2022, , .       | 1.6         | О              |
| 2  | Brain and Behavior of Dromiciops gliroides. Journal of Mammalian Evolution, 2020, 27, 177-197.                                                                                                   | 1.8         | 5              |
| 3  | Quantitative analysis of arterial supply to the developing brain in tetrapod vertebrates. Anatomical Record, 2020, 303, 2309-2329.                                                               | 1.4         | 1              |
| 4  | Quantitative Analysis of the Timing of Development of the Cerebellum and Precerebellar Nuclei in Monotremes, Metatherians, Rodents, and Humans. Anatomical Record, 2020, 303, 1998-2013.         | 1.4         | 2              |
| 5  | Numerical Analysis of the Cerebral Cortex in Diprotodontids (Marsupialia; Australidelphia) and Comparison with Eutherian Brains. Zoology, 2020, 143, 125845.                                     | 1.2         | 9              |
| 6  | Quantitative analysis of cerebellar morphology in monotreme, metatherian and eutherian mammals. Zoology, 2020, 139, 125753.                                                                      | 1.2         | 4              |
| 7  | Quantitative analysis of forebrain pallial morphology in monotremes and comparison with that in therians. Zoology, 2019, 134, 38-57.                                                             | 1.2         | 5              |
| 8  | Magnetic Resonance Imaging of the Brains of Three Peramelemorphian Marsupials. Journal of Mammalian Evolution, 2019, 26, 295-316.                                                                | 1.8         | 2              |
| 9  | Quantitative Analysis of the Maturation of the Main and Accessory Olfactory Systems in Monotremes and Metatherians in Comparison to Rodents and Humans. Anatomical Record, 2018, 301, 1258-1275. | 1.4         | 1              |
| 10 | Magnetic Resonance Imaging of the Brain of a Monotreme, the Short-Beaked Echidna (Tachyglossus) Tj ETQq0 C                                                                                       | 0 0 rgBT /C | overlock 10 Tf |
| 11 | Reconstruction of the Cortical Maps of the Tasmanian Tiger and Comparison to the Tasmanian Devil. PLoS ONE, 2017, 12, e0168993.                                                                  | 2.5         | 11             |
| 12 | Quantitative comparison of cerebral artery development in metatherians and monotremes with nonâ€human eutherians. Journal of Anatomy, 2016, 228, 384-395.                                        | 1.5         | 6              |
| 13 | A cadaveric study of surgical landmarks for retrograde parotidectomy. Annals of Medicine and Surgery, 2016, 9, 82-85.                                                                            | 1.1         | 6              |
| 14 | Anterior commissure versus corpus callosum: A quantitative comparison across mammals. Zoology, 2016, 119, 126-136.                                                                               | 1.2         | 10             |
| 15 | Timing of mammalian peripheral trigeminal system development relative to body size: A comparison of metatherians with rodents and monotremes. Somatosensory & Motor Research, 2015, 32, 187-199. | 0.9         | 4              |
| 16 | Quantitative comparison of cerebral artery development in human embryos with other eutherians. Journal of Anatomy, 2015, 227, 286-296.                                                           | 1.5         | 6              |
| 17 | Quantitative analysis of somatosensory cortex development in eutherians, with a comparison with metatherians and monotremes. Somatosensory & Motor Research, 2015, 32, 137-152.                  | 0.9         | 6              |
| 18 | Quantitative analysis of somatosensory cortex development in metatherians and monotremes, with comparison to the laboratory rat. Somatosensory & Motor Research, 2015, 32, 87-98.                | 0.9         | 9              |

| #  | Article                                                                                                                                                                                                | IF                            | CITATIONS           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------|
| 19 | Spinal cord development in marsupials in relation to birthing strategies and in comparison with monotremes and the laboratory rat. Somatosensory & Motor Research, 2014, 31, 152-165.                  | 0.9                           | 6                   |
| 20 | Vestibular development in marsupials and monotremes. Journal of Anatomy, 2014, 224, 447-458.                                                                                                           | 1.5                           | 10                  |
| 21 | Brain and behaviour of living and extinct echidnas. Zoology, 2014, 117, 349-361.                                                                                                                       | 1.2                           | 10                  |
| 22 | Development of the spinal cord and peripheral nervous system in platypus (Ornithorhynchus) Tj ETQq0 0 0 rgBT / 29, 13-27.                                                                              | Overlock<br>0.9               | 10 Tf 50 627<br>3   |
| 23 | Distinct Development of the Trigeminal Sensory Nuclei in Platypus and Echidna. Brain, Behavior and Evolution, 2012, 79, 261-274.                                                                       | 1.7                           | 6                   |
| 24 | Development of the Olfactory Pathways in Platypus and Echidna. Brain, Behavior and Evolution, 2012, 79, 45-56.                                                                                         | 1.7                           | 9                   |
| 25 | Distinct Development of Peripheral Trigeminal Pathways in the Platypus <i>(Ornithorhynchus) Tj ETQq1 1 0. Behavior and Evolution, 2012, 79, 113-127.</i>                                               | .784314 r <sub>j</sub><br>1.7 | gBT /Overloci<br>10 |
| 26 | Development of the Cerebellum in the Platypus <b><i>(Ornithorhynchus</i></b> ) Tj ETQq0                                                                                                                | 0 0 rgBT /<br>1.7             | Overlock 10         |
| 27 | Development of the dorsal and ventral thalamus in platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus). Brain Structure and Function, 2012, 217, 577-589.             | 2.3                           | 1                   |
| 28 | Development of the hypothalamus and pituitary in platypus ( <i>Ornithorhynchus anatinus</i> ) and shortâ€beaked echidna ( <i>Tachyglossus aculeatus</i> ). Journal of Anatomy, 2012, 221, 9-20.        | 1.5                           | 6                   |
| 29 | Distinct Development of the Cerebral Cortex in Platypus and Echidna. Brain, Behavior and Evolution, 2012, 79, 57-72.                                                                                   | 1.7                           | 13                  |
| 30 | Rapid somatic expansion causes the brain to lag behind: the case of the brain and behavior of New Zealand's Haast's Eagle (Harpagornis moorei). Journal of Vertebrate Paleontology, 2009, 29, 637-649. | 1.0                           | 19                  |
| 31 | Cyto- and chemoarchitecture of the sensory trigeminal nuclei of the echidna, platypus and rat. Journal of Chemical Neuroanatomy, 2006, 31, 81-107.                                                     | 2.1                           | 12                  |
| 32 | Chemoarchitecture of the Monotreme Olfactory Bulb. Brain, Behavior and Evolution, 2006, 67, 69-84.                                                                                                     | 1.7                           | 24                  |
| 33 | Cyto- and Chemoarchitecture of the Monotreme Olfactory Tubercle. Brain, Behavior and Evolution, 2006, 67, 85-102.                                                                                      | 1.7                           | 8                   |
| 34 | The Hypothalamic Supraoptic and Paraventricular Nuclei of the Echidna and Platypus. Brain, Behavior and Evolution, 2006, 68, 197-217.                                                                  | 1.7                           | 3                   |
| 35 | The Anterior Olfactory Nucleus and Piriform Cortex of the Echidna and Platypus. Brain, Behavior and Evolution, 2006, 67, 203-227.                                                                      | 1.7                           | 11                  |
| 36 | Cyto―and chemoarchitecture of the cerebral cortex of an echidna ( <i>Tachyglossus aculeatus</i> ). II. Laminar organization and synaptic density. Journal of Comparative Neurology, 2005, 482, 94-122. | 1.6                           | 31                  |

| #  | Article                                                                                                                                                                    | IF              | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
| 37 | Cyto- and chemoarchitecture of the amygdala of a monotreme, Tachyglossus aculeatus (the) Tj ETQq1 1 0.7843                                                                 | 14.rgBT/0       | Overlock 10 T |
| 38 | Cyto- and chemoarchitecture of the dorsal thalamus of the monotreme Tachyglossus aculeatus, the short beaked echidna. Journal of Chemical Neuroanatomy, 2005, 30, 161-183. | 2.1             | 11            |
| 39 | The Claustrum Is Not Missing from All Monotreme Brains. Brain, Behavior and Evolution, 2004, 64, 223-241.                                                                  | 1.7             | 47            |
| 40 | An AcrobatTM-based program for gross anatomy revision. Medical Education, 2004, 38, 1185-1186.                                                                             | 2.1             | 10            |
| 41 | Cyto―and chemoarchitecture of the cerebral cortex of the Australian echidna ( <i>Tachyglossus) Tj ETQq1 1 0.7</i>                                                          | 84314 rg<br>1.6 | BT /Qverloc   |
| 42 | Tactile sensory function in the forearm of the monotremeTachyglossus aculeatus. Journal of Comparative Neurology, 2003, 459, 173-185.                                      | 1.6             | 6             |
| 43 | Organization of human hypothalamus in fetal development. Journal of Comparative Neurology, 2002, 446, 301-324.                                                             | 1.6             | 110           |
| 44 | Early development of the hypothalamus of a wallaby ( <i>Macropus eugenii</i> ). Journal of Comparative Neurology, 2002, 453, 199-215.                                      | 1.6             | 13            |
| 45 | GAP-43 Immunoreactivity in the brain of the developing and adult wallaby ( Macropus eugenii ).<br>Anatomy and Embryology, 2002, 206, 97-118.                               | 1.5             | 11            |
| 46 | Organization of the human paraventricular hypothalamic nucleus. Journal of Comparative Neurology, 2000, 423, 299-318.                                                      | 1.6             | 71            |
| 47 | S100 PROTEIN IS EXPRESSED IN INDUCED ATHEROSCLEROTIC LESIONS OF HYPERCHOLESTEROLAEMIC RATS. Biomedical Research, 1998, 19, 279-287.                                        | 0.9             | 6             |