Paul Magdon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8989557/publications.pdf

Version: 2024-02-01

759233 677142 22 802 12 22 h-index citations g-index papers 23 23 23 1528 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Land-use intensity and landscape structure drive the acoustic composition of grasslands. Agriculture, Ecosystems and Environment, 2022, 328, 107845.	5.3	8
2	RSDB: an easy to deploy openâ€source web platform for remote sensing raster and point cloud data management, exploration and processing. Ecography, 2021, 44, 414-426.	4.5	6
3	Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multiâ€scale approach. Diversity and Distributions, 2021, 27, 439-453.	4.1	8
4	The Horizontal Distribution of Branch Biomass in European Beech: A Model Based on Measurements and TLS Based Proxies. Remote Sensing, 2021, 13, 1041.	4.0	4
5	CanopyShotNoise – An individual-based tree canopy modelling framework for projecting remote-sensing data and ecological sensitivity analysis. International Journal of Remote Sensing, 2021, 42, 6837-6865.	2.9	5
6	Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nature Ecology and Evolution, 2020, 4, 1204-1212.	7.8	76
7	Deriving Stand Structural Complexity from Airborne Laser Scanning Data—What Does It Tell Us about a Forest?. Remote Sensing, 2020, 12, 1854.	4.0	22
8	A Range of Earth Observation Techniques for Assessing Plant Diversity., 2020,, 309-348.		6
9	Improving precision of field inventory estimation of aboveground biomass through an alternative view on plot biomass. Forest Ecosystems, 2020, 7, .	3.1	9
10	Analyzing the relationship between historic canopy dynamics and current plant species diversity in the herb layer of temperate forests using long-term Landsat time series. Remote Sensing of Environment, 2019, 232, 111305.	11.0	12
11	Canopy height estimation with TanDEM-X in temperate and boreal forests. International Journal of Applied Earth Observation and Geoinformation, 2019, 82, 101904.	2.8	19
12	Radar vision in the mapping of forest biodiversity from space. Nature Communications, 2019, 10, 4757.	12.8	66
13	Canopy penetration depth estimation with TanDEM-X and its compensation in temperate forests. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 147, 232-241.	11.1	40
14	Scale-guided mapping of forest stand structural heterogeneity from airborne LiDAR. Ecological Indicators, 2019, 102, 410-425.	6.3	12
15	Evaluating the Potential of ALS Data to Increase the Efficiency of Aboveground Biomass Estimates in Tropical Peat–Swamp Forests. Remote Sensing, 2018, 10, 1344.	4.0	8
16	Understanding Forest Health with Remote Sensing-Part IIâ€"A Review of Approaches and Data Models. Remote Sensing, 2017, 9, 129.	4.0	110
17	Understanding Forest Health with Remote Sensing -Part l—A Review of Spectral Traits, Processes and Remote-Sensing Characteristics. Remote Sensing, 2016, 8, 1029.	4.0	138
18	On the site-level suitability of biomass models. Environmental Modelling and Software, 2015, 73, 14-26.	4.5	14

#	Article	IF	CITATION
19	Translating criteria of international forest definitions into remote sensing image analysis. Remote Sensing of Environment, 2014, 149, 252-262.	11.0	30
20	Uncertainties of forest area estimates caused by the minimum crown cover criterion. Environmental Monitoring and Assessment, 2013, 185, 5345-5360.	2.7	20
21	Estimating aboveground carbon in a catchment of the Siberian forest tundra: Combining satellite imagery and field inventory. Remote Sensing of Environment, 2009, 113, 518-531.	11.0	133
22	Landscape controls of CH ₄ fluxes in a catchment of the forest tundra ecotone in northern Siberia. Global Change Biology, 2008, 14, 2040-2056.	9.5	51