Nicola Tumino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8987860/publications.pdf

Version: 2024-02-01

279798 345221 1,639 53 23 36 citations h-index g-index papers 53 53 53 2449 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	TSC loss is a clonal event in eosinophilic solid and cystic renal cell carcinoma: a multiregional tumor sampling study. Modern Pathology, 2022, 35, 376-385.	5.5	19
2	Glucocorticoids inhibit human hematopoietic stem cell differentiation toward a common ILC precursor. Journal of Allergy and Clinical Immunology, 2022, 149, 1772-1785.	2.9	5
3	Expansion of CD4dimCD8+ T cells characterizes macrophage activation syndrome and other secondary HLH. Blood, 2022, 140, 262-273.	1.4	30
4	NK cells and ILCs in tumor immunotherapy. Molecular Aspects of Medicine, 2021, 80, 100870.	6.4	134
5	Glucocorticoids and the cytokines IL-12, IL-15, and IL-18 present in the tumor microenvironment induce PD-1 expression on human natural killer cells. Journal of Allergy and Clinical Immunology, 2021, 147, 349-360.	2.9	65
6	Identification of neuroblastoma cell lines with uncommon TAZ ⁺ /mesenchymal stromal cell phenotype with strong suppressive activity on natural killer cells., 2021, 9, e001313.		14
7	Interaction Between MDSC and NK Cells in Solid and Hematological Malignancies: Impact on HSCT. Frontiers in Immunology, 2021, 12, 638841.	4.8	34
8	NK Cells and PMN-MDSCs in the Graft From G-CSF Mobilized Haploidentical Donors Display Distinct Gene Expression Profiles From Those of the Non-Mobilized Counterpart. Frontiers in Immunology, 2021, 12, 657329.	4.8	11
9	Impact of PD-L1 and PD-1 Expression on the Prognostic Significance of CD8+ Tumor-Infiltrating Lymphocytes in Non-Small Cell Lung Cancer. Frontiers in Immunology, 2021, 12, 680973.	4.8	20
10	PD-1/PD-L1 in Cancer: Pathophysiological, Diagnostic and Therapeutic Aspects. International Journal of Molecular Sciences, 2021, 22, 5123.	4.1	61
11	Regulation of the Immune System Development by Glucocorticoids and Sex Hormones. Frontiers in Immunology, 2021, 12, 672853.	4.8	18
12	Wilms' Tumor Primary Cells Display Potent Immunoregulatory Properties on NK Cells and Macrophages. Cancers, 2021, 13, 224.	3.7	11
13	Polymorphonuclear myeloid-derived suppressor cells impair the anti-tumor efficacy of GD2.CAR T-cells in patients with neuroblastoma. Journal of Hematology and Oncology, 2021, 14, 191.	17.0	39
14	Polymorphonuclear Myeloid-Derived Suppressor Cells Are Abundant in Peripheral Blood of Cancer Patients and Suppress Natural Killer Cell Anti-Tumor Activity. Frontiers in Immunology, 2021, 12, 803014.	4.8	13
15	PMN-MDSC are a new target to rescue graft-versus-leukemia activity of NK cells in haplo-HSC transplantation. Leukemia, 2020, 34, 932-937.	7.2	26
16	Interleukin-15 and cancer: some solved and many unsolved questions. , 2020, 8, e001428.		44
17	The Immune Checkpoint PD-1 in Natural Killer Cells: Expression, Function and Targeting in Tumour Immunotherapy. Cancers, 2020, 12, 3285.	3.7	85
18	Helper Innate Lymphoid Cells in Allogenic Hematopoietic Stem Cell Transplantation and Graft Versus Host Disease. Frontiers in Immunology, 2020, 11, 582098.	4.8	7

#	Article	IF	CITATIONS
19	Inhibitory Receptors and Checkpoints in Human NK Cells, Implications for the Immunotherapy of Cancer. Frontiers in Immunology, 2020, 11, 2156.	4.8	49
20	Characterisation of innate lymphoid cell subsets infiltrating colorectal carcinoma. Gut, 2020, 69, 2261-2263.	12.1	13
21	Characterization of Human NK Cell-Derived Exosomes: Role of DNAM1 Receptor in Exosome-Mediated Cytotoxicity against Tumor. Cancers, 2020, 12, 661.	3.7	96
22	An Anti-inflammatory microRNA Signature Distinguishes Group 3 Innate Lymphoid Cells From Natural Killer Cells in Human Decidua. Frontiers in Immunology, 2020, 11, 133.	4.8	15
23	Inhibitory checkpoints in human natural killer cells: IUPHAR Review 28. British Journal of Pharmacology, 2020, 177, 2889-2903.	5.4	10
24	$TCR\hat{1}\pm\hat{1}^2/CD19$ depleted hematopoietic stem cell transplantation from haploidentical donors: dissecting the GvL/GvHD conundrum. Bone Marrow Transplantation, 2020, 55, 1483-1484.	2.4	1
25	Myeloid Derived Suppressor Cells Expansion Persists After Early ART and May Affect CD4 T Cell Recovery. Frontiers in Immunology, 2019, 10, 1886.	4.8	15
26	Human CAR NK Cells: A New Non-viral Method Allowing High Efficient Transfection and Strong Tumor Cell Killing. Frontiers in Immunology, 2019, 10, 957.	4.8	88
27	Presence of innate lymphoid cells in pleural effusions of primary and metastatic tumors: Functional analysis and expression of PDâ€₁ receptor. International Journal of Cancer, 2019, 145, 1660-1668.	5.1	65
28	Universal Ready-to-Use Immunotherapeutic Approach for the Treatment of Cancer: Expanded and Activated Polyclonal Î ³ δ Memory T Cells. Frontiers in Immunology, 2019, 10, 2717.	4.8	31
29	PD-1 in human NK cells: evidence of cytoplasmic mRNA and protein expression. Oncolmmunology, 2019, 8, 1557030.	4.6	76
30	Helper Innate Lymphoid Cells in Human Tumors: A Double-Edged Sword?. Frontiers in Immunology, 2019, 10, 3140.	4.8	9
31	Exploiting Human NK Cells in Tumor Therapy. Frontiers in Immunology, 2019, 10, 3013.	4.8	37
32	IL-18 and Stem Cell Factor affect hematopoietic progenitor cells in HIV-infected patients treated during primary HIV infection. Cytokine, 2018, 103, 34-37.	3.2	8
33	Human natural killer cells and other innate lymphoid cells in cancer: Friends or foes?. Immunology Letters, 2018, 201, 14-19.	2.5	50
34	A new procedure to analyze polymorphonuclear myeloid derived suppressor cells in cryopreserved samples cells by flow cytometry. PLoS ONE, 2018, 13, e0202920.	2.5	7
35	PKR and GCN2 stress kinases promote an ER stress-independent eIF2α phosphorylation responsible for calreticulin exposure in melanoma cells. Oncolmmunology, 2018, 7, e1466765.	4.6	38
36	Human $\hat{I}^3\hat{I}$ T-Cells: From Surface Receptors to the Therapy of High-Risk Leukemias. Frontiers in Immunology, 2018, 9, 984.	4.8	58

#	Article	IF	CITATIONS
37	Myeloid-Derived Suppressor Cells Specifically Suppress IFN- \hat{I}^3 Production and Antitumor Cytotoxic Activity of Vδ2 T Cells. Frontiers in Immunology, 2018, 9, 1271.	4.8	35
38	Bone Marrow CD34 ⁺ Progenitor Cells from HIV-Infected Patients Show an Impaired T Cell Differentiation Potential Related to Proinflammatory Cytokines. AIDS Research and Human Retroviruses, 2017, 33, 590-596.	1.1	17
39	In HIV/HCV co-infected patients T regulatory and myeloid-derived suppressor cells persist after successful treatment with directly acting antivirals. Journal of Hepatology, 2017, 67, 422-424.	3.7	20
40	HIV-Specific CD8 T Cells Producing CCL-4 Are Associated With Worse Immune Reconstitution During Chronic Infection. Journal of Acquired Immune Deficiency Syndromes (1999), 2017, 75, 338-344.	2.1	12
41	Dendritic cells activation is associated with sustained virological response to telaprevir treatment of HCV-infected patients. Clinical Immunology, 2017, 183, 82-90.	3.2	0
42	Human Zika infection induces a reduction of IFN- \hat{I}^3 producing CD4 T-cells and a parallel expansion of effector VÎ2 T-cells. Scientific Reports, 2017, 7, 6313.	3.3	35
43	Granulocytic Myeloid–Derived Suppressor Cells Increased in Early Phases of Primary HIV Infection Depending on TRAIL Plasma Level. Journal of Acquired Immune Deficiency Syndromes (1999), 2017, 74, 575-582.	2.1	25
44	Different features of \hat{VIZ} T and NK cells in fatal and non-fatal human Ebola infections. PLoS Neglected Tropical Diseases, 2017, 11, e0005645.	3.0	46
45	Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection. Cell Death and Disease, 2016, 7, e2164-e2164.	6.3	51
46	The Different Roles of Interleukin 7 and Interleukin 18 in Affecting Lymphoid Hematopoietic Progenitor Cells and CD4 Homeostasis in Naive Primary and Chronic HIV-Infected Patients. Clinical Infectious Diseases, 2016, 63, 1683-1684.	5.8	3
47	In HIV-positive patients, myeloid-derived suppressor cells induce T-cell anergy by suppressing CD3ζ expression through ELF-1 inhibition. Aids, 2015, 29, 2397-2407.	2.2	48
48	Primary and Chronic HIV Infection Differently Modulates Mucosal \hat{VII} and \hat{VII} T-Cells Differentiation Profile and Effector Functions. PLoS ONE, 2015, 10, e0129771.	2.5	17
49	VÎ ³ 9VÎ ² T-Cell Polyfunctionality Is Differently Modulated in HAART-Treated HIV Patients according to CD4 T-Cell Count. PLoS ONE, 2015, 10, e0132291.	2.5	10
50	Early ART in primary HIV infection may also preserve lymphopoiesis capability in circulating haematopoietic progenitor cells: a case report. Journal of Antimicrobial Chemotherapy, 2015, 70, 1598-1600.	3.0	6
51	HIV Infection of Monocytes-Derived Dendritic Cells Inhibits Vγ9Vδ2 T Cells Functions. PLoS ONE, 2014, 9, e111095.	2.5	12
52	In HIV/HCV Coinfected Patients Dendritic Cell Activation State Is Not Associated With IL28B Genotype. Journal of Infectious Diseases, 2013, 208, 364-365.	4.0	0
53	Stable Virologic Suppression during Raltegravir plus Atazanavir Dual-Therapy Taken Every other Day: A Case Report. Journal of AIDS & Clinical Research, 2012, 01, .	0.5	0