Jingjing Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8987512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 2021, 372, 1327-1332.	12.6	351
2	Highâ€Performance Planar Perovskite Solar Cells Using Low Temperature, Solution–Combustionâ€Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%. Advanced Energy Materials, 2018, 8, 1703432.	19.5	279
3	A simple and efficient solar cell parameter extraction method from a single current-voltage curve. Journal of Applied Physics, 2011, 110, .	2.5	216
4	Intermolecular Exchange Boosts Efficiency of Airâ€Stable, Carbonâ€Based Allâ€Inorganic Planar CsPbIBr ₂ Perovskite Solar Cells to Over 9%. Advanced Energy Materials, 2018, 8, 1802080.	19.5	215
5	Transparent Conductive Oxide-Free Perovskite Solar Cells with PEDOT:PSS as Transparent Electrode. ACS Applied Materials & Interfaces, 2015, 7, 15314-15320.	8.0	201
6	NiO/Perovskite Heterojunction Contact Engineering for Highly Efficient and Stable Perovskite Solar Cells. Advanced Science, 2020, 7, 1903044.	11.2	146
7	Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions. Journal of Materials Chemistry A, 2016, 4, 16546-16552.	10.3	143
8	Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. Journal of Materials Chemistry A, 2016, 4, 887-893.	10.3	137
9	Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward PCE exceeding 14%. Nano Energy, 2019, 60, 583-590.	16.0	135
10	Efficiency enhancement of planar perovskite solar cells by adding zwitterion/LiF double interlayers for electron collection. Nanoscale, 2015, 7, 896-900.	5.6	127
11	Controlled Growth of Largeâ€Area Highâ€Performance Smallâ€Molecule Organic Singleâ€Crystalline Transistors by Slotâ€Die Coating Using A Mixed Solvent System. Advanced Materials, 2013, 25, 6442-6447.	21.0	123
12	Development of Inverted Organic Solar Cells with TiO ₂ Interface Layer by Using Low-Temperature Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2013, 5, 713-718.	8.0	115
13	Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement. Nano Energy, 2016, 28, 417-425.	16.0	114
14	Dual-Phase CsPbCl ₃ –Cs ₄ PbCl ₆ Perovskite Films for Self-Powered, Visible-Blind UV Photodetectors with Fast Response. ACS Applied Materials & Interfaces, 2020, 12, 32961-32969.	8.0	114
15	Band Alignment Engineering Towards High Efficiency Carbonâ€Based Inorganic Planar CsPblBr ₂ Perovskite Solar Cells. ChemSusChem, 2019, 12, 2318-2325.	6.8	110
16	High-Efficiency (>14%) and Air-Stable Carbon-Based, All-Inorganic CsPbl ₂ Br Perovskite Solar Cells through a Top-Seeded Growth Strategy. ACS Energy Letters, 0, , 1500-1510.	17.4	106
17	Light Processing Enables Efficient Carbon-Based, All-Inorganic Planar CsPbIBr ₂ Solar Cells with High Photovoltages. ACS Applied Materials & Interfaces, 2019, 11, 2997-3005.	8.0	98
18	Improve the oxide/perovskite heterojunction contact for low temperature high efficiency and stable all-inorganic CsPbl2Br perovskite solar cells. Nano Energy, 2020, 67, 104241.	16.0	97

#	Article	IF	CITATIONS
19	Stepwise Cyanation of Naphthalene Diimide for n-Channel Field-Effect Transistors. Organic Letters, 2012, 14, 2964-2967.	4.6	92
20	Device simulation of inverted CH3NH3PbI3â^'xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Solar Energy, 2018, 169, 11-18.	6.1	92
21	Enhanced efficiency and stability of planar perovskite solar cells by introducing amino acid to SnO2/perovskite interface. Journal of Power Sources, 2020, 455, 227974.	7.8	90
22	Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nature Energy, 2022, 7, 528-536.	39.5	89
23	Highly Efficient and Stable Planar Perovskite Solar Cells with Modulated Diffusion Passivation Toward High Power Conversion Efficiency and Ultrahigh Fill Factor. Solar Rrl, 2019, 3, 1900293.	5.8	87
24	A Review on Energy Bandâ€Gap Engineering for Perovskite Photovoltaics. Solar Rrl, 2019, 3, 1900304.	5.8	87
25	Enhancing the planar heterojunction perovskite solar cell performance through tuning the precursor ratio. Journal of Materials Chemistry A, 2016, 4, 7943-7949.	10.3	86
26	Improving the efficiency and stability of inverted perovskite solar cells with dopamine-copolymerized PEDOT:PSS as a hole extraction layer. Journal of Materials Chemistry A, 2017, 5, 13817-13822.	10.3	86
27	Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15897-15904.	10.3	85
28	Interfacial Voids Trigger Carbon-Based, All-Inorganic CsPbIBr2 Perovskite Solar Cells with Photovoltage Exceeding 1.33ÂV. Nano-Micro Letters, 2020, 12, 87.	27.0	84
29	Aged Precursor Solution toward Low-Temperature Fabrication of Efficient Carbon-Based All-Inorganic Planar CsPbIBr ₂ Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 4991-4997.	5.1	83
30	Numerical Simulation of Planar Heterojunction Perovskite Solar Cells Based on SnO ₂ Electron Transport Layer. ACS Applied Energy Materials, 2019, 2, 4504-4512.	5.1	83
31	Enhanced efficiency of planar perovskite solar cells via a two-step deposition using DMF as an additive to optimize the crystal growth behavior. Journal of Materials Chemistry A, 2017, 5, 13032-13038.	10.3	82
32	Enhanced planar perovskite solar cell efficiency and stability using a perovskite/PCBM heterojunction formed in one step. Nanoscale, 2018, 10, 3053-3059.	5.6	80
33	Recent progress of twoâ€dimensional lead halide perovskite single crystals: Crystal growth, physical properties, and device applications. EcoMat, 2020, 2, e12036.	11.9	80
34	Bisindeno-annulated pentacenes with exceptionally high photo-stability and ordered molecular packing: simple synthesis by a regio-selective Scholl reaction. Chemical Communications, 2015, 51, 3604-3607.	4.1	78
35	Thiophene-Fused Tetracene Diimide with Low Band Gap and Ambipolar Behavior. Organic Letters, 2011, 13, 5960-5963.	4.6	76
36	Cyanated Diazatetracene Diimides with Ultrahigh Electron Affinity for <i>n</i> -Channel Field Effect Transistors. Organic Letters, 2013, 15, 1194-1197.	4.6	72

#	Article	IF	CITATIONS
37	Performance Enhancement of Planar Heterojunction Perovskite Solar Cells through Tuning the Doping Properties of Hole-Transporting Materials. ACS Omega, 2017, 2, 326-336.	3.5	72
38	Linear and star-shaped pyrazine-containing acene dicarboximides with high electron-affinity. Organic and Biomolecular Chemistry, 2012, 10, 7045.	2.8	71
39	Dianthraceno[a,e]pentalenes: synthesis, crystallographic structures and applications in organic field-effect transistors. Chemical Communications, 2015, 51, 503-506.	4.1	70
40	Recent advances in resistive random access memory based on lead halide perovskite. InformaÄnÃ- Materiály, 2021, 3, 293-315.	17.3	70
41	Enhanced Planar Perovskite Solar Cell Performance via Contact Passivation of TiO ₂ /Perovskite Interface with NaCl Doping Approach. ACS Applied Energy Materials, 2018, 1, 3826-3834.	5.1	68
42	Recent Progress of Electrode Materials for Flexible Perovskite Solar Cells. Nano-Micro Letters, 2022, 14, 117.	27.0	68
43	Lowâ€Temperature Solutionâ€Processed ZnO Electron Transport Layer for Highly Efficient and Stable Planar Perovskite Solar Cells with Efficiency Over 20%. Solar Rrl, 2019, 3, 1900096.	5.8	66
44	Boosting performance of perovskite solar cells with Graphene quantum dots decorated SnO2 electron transport layers. Applied Surface Science, 2020, 507, 145099.	6.1	66
45	Enhanced Efficiency and Stability of Allâ€Inorganic CsPbI ₂ Br Perovskite Solar Cells by Organic and Ionic Mixed Passivation. Advanced Science, 2021, 8, e2101367.	11.2	66
46	Enhanced efficiency and stability of planar perovskite solar cells using SnO2:InCl3 electron transport layer through synergetic doping and passivation approaches. Chemical Engineering Journal, 2021, 407, 127997.	12.7	65
47	Solution processed F doped ZnO (ZnO:F) for thin film transistors and improved stability through co-doping with alkali metals. Journal of Materials Chemistry C, 2015, 3, 1787-1793.	5.5	64
48	Solution-Processed LiF-Doped ZnO Films for High Performance Low Temperature Field Effect Transistors and Inverted Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 6687-6693.	8.0	63
49	Sandwiched electrode buffer for efficient and stable perovskite solar cells with dual back surface fields. Joule, 2021, 5, 2148-2163.	24.0	63
50	Antiaromatic bisindeno-[n]thienoacenes with small singlet biradical characters: syntheses, structures and chain length dependent physical properties. Chemical Science, 2014, 5, 4490-4503.	7.4	62
51	Zâ€Shaped Pentalenoâ€Acene Dimers with High Stability and Small Band Gap. Angewandte Chemie - International Edition, 2016, 55, 2693-2696.	13.8	59
52	Unusual Electronic and Optical Properties of Two-Dimensional Ga ₂ O ₃ Predicted by Density Functional Theory. Journal of Physical Chemistry C, 2018, 122, 24592-24599.	3.1	58
53	Elucidating the Roles of TiCl ₄ and PCBM Fullerene Treatment on TiO ₂ Electron Transporting Layer for Highly Efficient Planar Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 1044-1053.	3.1	57
54	Synthesis and Characterization of Oxygen-Embedded Quinoidal Pentacene and Nonacene. Journal of the American Chemical Society, 2019, 141, 2169-2176.	13.7	57

#	Article	IF	CITATIONS
55	Polyelectrolyteâ€Doped SnO ₂ as a Tunable Electron Transport Layer for Highâ€Efficiency and Stable Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900336.	5.8	56
56	Efficient bifacial semitransparent perovskite solar cells with silver thin film electrode. Solar Energy Materials and Solar Cells, 2017, 170, 278-286.	6.2	55
57	Disc-like 7, 14-dicyano-ovalene-3,4:10,11-bis(dicarboximide) as a solution-processible n-type semiconductor for air stable field-effect transistors. Chemical Science, 2012, 3, 846-850.	7.4	54
58	Optimizing the Performance of CsPbI3-Based Perovskite Solar Cells via Doping a ZnO Electron Transport Layer Coupled with Interface Engineering. Nano-Micro Letters, 2019, 11, 91.	27.0	54
59	Synchronous Passivation of Defects with Low Formation Energies via Terdentate Anchoring Enabling High Performance Perovskite Solar Cells with Efficiency over 24%. Advanced Functional Materials, 2022, 32, .	14.9	52
60	Hf0.5Zr0.5O2-based ferroelectric memristor with multilevel storage potential and artificial synaptic plasticity. Science China Materials, 2021, 64, 727-738.	6.3	51
61	A work-function tunable polyelectrolyte complex (PEI:PSS) as a cathode interfacial layer for inverted organic solar cells. Journal of Materials Chemistry A, 2014, 2, 7788-7794.	10.3	49
62	Phenothiazine-Based Hole-Transporting Materials toward Eco-friendly Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 3021-3027.	5.1	49
63	Hole mobility of 3.56 cm ² V ^{â^'1} s ^{â^'1} accomplished using more extended dithienothiophene with furan flanked diketopyrrolopyrrole polymer. Journal of Materials Chemistry C, 2015, 3, 9299-9305.	5.5	47
64	Efficient Bifacial Semitransparent Perovskite Solar Cells Using Ag/V ₂ O ₅ as Transparent Anodes. ACS Applied Materials & Interfaces, 2018, 10, 12731-12739.	8.0	46
65	Enhanced inverted organic solar cell performance by post-treatments of solution-processed ZnO buffer layers. RSC Advances, 2014, 4, 6646.	3.6	45
66	Low temperature aqueous solution-processed Li doped ZnO buffer layers for high performance inverted organic solar cells. Journal of Materials Chemistry C, 2016, 4, 6169-6175.	5.5	45
67	Stable 7,14-Disubstituted-5,12-Dithiapentacenes with Quinoidal Conjugation. Organic Letters, 2014, 16, 3966-3969.	4.6	44
68	Potential Applications of Halide Double Perovskite Cs ₂ AgInX ₆ (X = Cl, Br) in Flexible Optoelectronics: Unusual Effects of Uniaxial Strains. Journal of Physical Chemistry Letters, 2019, 10, 1120-1125.	4.6	44
69	Elucidating the charge carrier transport and extraction in planar heterojunction perovskite solar cells by Kelvin probe force microscopy. Journal of Materials Chemistry A, 2016, 4, 17464-17472.	10.3	43
70	Solution-processed high performance organic thin film transistors enabled by roll-to-roll slot die coating technique. Organic Electronics, 2018, 54, 80-88.	2.6	43
71	Interface studies of the planar heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 783-790.	6.2	42
72	Reveal the Humidity Effect on the Phase Pure CsPbBr ₃ Single Crystals Formation at Room Temperature and Its Application for Ultrahigh Sensitive Xâ€Ray Detector. Advanced Science, 2022, 9, e2103482.	11.2	41

#	Article	IF	CITATIONS
73	A two-layer structured PbI ₂ thin film for efficient planar perovskite solar cells. Nanoscale, 2015, 7, 12092-12095.	5.6	40
74	Nitrogen and sulfur co-doped graphene aerogels as an efficient metal-free catalyst for oxygen reduction reaction in an alkaline solution. RSC Advances, 2016, 6, 22781-22790.	3.6	40
75	Structures and properties of polyimide fibers containing ether units. Journal of Materials Science, 2015, 50, 4104-4114.	3.7	39
76	Improved Doping and Optoelectronic Properties of Zn-Doped Cspbbr ₃ Perovskite through Mn Codoping Approach. Journal of Physical Chemistry Letters, 2021, 12, 3393-3400.	4.6	39
77	Theoretical Analysis of Twoâ€Terminal and Fourâ€Terminal Perovskite/Copper Indium Gallium Selenide Tandem Solar Cells. Solar Rrl, 2019, 3, 1900303.	5.8	38
78	Recycling of FTO/TiO ₂ Substrates: Route toward Simultaneously High-Performance and Cost-Efficient Carbon-Based, All-Inorganic CsPbIBr ₂ Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 4549-4557.	8.0	38
79	Achieving high performance and stable inverted planar perovskite solar cells using lithium and cobalt co-doped nickel oxide as hole transport layers. Journal of Materials Chemistry C, 2019, 7, 9270-9277.	5.5	37
80	Benign Pinholes in CsPbIBr ₂ Absorber Film Enable Efficient Carbon-Based, All-Inorganic Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 5254-5262.	5.1	37
81	Efficient NiO <i>x</i> Hole Transporting Layer Obtained by the Oxidation of Metal Nickel Film for Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 4700-4707.	5.1	37
82	An efficient TeO ₂ /Ag transparent top electrode for 20%-efficiency bifacial perovskite solar cells with a bifaciality factor exceeding 80%. Journal of Materials Chemistry A, 2019, 7, 15156-15163.	10.3	37
83	A Review on Energy Bandâ€Gap Engineering for Perovskite Photovoltaics. Solar Rrl, 2019, 3, 1970116.	5.8	36
84	Enhanced Polymer Thin Film Transistor Performance by Carefully Controlling the Solution Selfâ€Assembly and Film Alignment with Slot Die Coating. Advanced Electronic Materials, 2015, 1, 1500036.	5.1	35
85	Thienoaceneâ€Fused Pentalenes: Syntheses, Structures, Physical Properties and Applications for Organic Fieldâ€Effect Transistors. Chemistry - A European Journal, 2015, 21, 2019-2028.	3.3	35
86	Surface reconstruction strategy improves the all-inorganic CsPbIBr2 based perovskite solar cells and photodetectors performance. Nano Energy, 2022, 94, 106960.	16.0	35
87	Diacenopentalene dicarboximides as new n-type organic semiconductors for field-effect transistors. Journal of Materials Chemistry C, 2016, 4, 8758-8764.	5.5	34
88	Improving Electron Extraction Ability and Device Stability of Perovskite Solar Cells Using a Compatible PCBM/AZO Electron Transporting Bilayer. Nanomaterials, 2018, 8, 720.	4.1	34
89	Intermediate Phase Halide Exchange Strategy toward a High-Quality, Thick CsPbBr ₃ Film for Optoelectronic Applications. ACS Applied Materials & Interfaces, 2019, 11, 22543-22549.	8.0	34
90	Suppressing Halide Phase Segregation in CsPbIBr ₂ Films by Polymer Modification for Hysteresis-Less All-Inorganic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 2868-2878.	8.0	34

#	Article	IF	CITATIONS
91	Recent progress on the effects of impurities and defects on the properties of Ga ₂ O ₃ . Journal of Materials Chemistry C, 2022, 10, 13395-13436.	5.5	34
92	Interface engineering of TiO2/perovskite interface via fullerene derivatives for high performance planar perovskite solar cells. Organic Electronics, 2018, 62, 459-467.	2.6	32
93	Mechanical and thermodynamic properties of two-dimensional monoclinic Ga2O3. Materials and Design, 2019, 184, 108197.	7.0	32
94	Recent progress of inorganic hole transport materials for efficient and stable perovskite solar cells. Nano Select, 2021, 2, 1055-1080.	3.7	32
95	Large core-expanded triazatruxene-based discotic liquid crystals: synthesis, characterization and physical properties. Journal of Materials Chemistry, 2012, 22, 13180.	6.7	31
96	6,13-Dicyano pentacene-2,3:9,10-bis(dicarboximide) for solution-processed air-stable n-channel field effect transistors and complementary circuit. Journal of Materials Chemistry C, 2013, 1, 456-462.	5.5	30
97	Improvement of transparent silver thin film anodes for organic solar cells with a decreased percolation threshold of silver. Solar Energy Materials and Solar Cells, 2014, 127, 193-200.	6.2	30
98	Effect of ultraviolet absorptivity and waterproofness of poly(3,4-ethylenedioxythiophene) with extremely weak acidity, high conductivity on enhanced stability of perovskite solar cells. Journal of Power Sources, 2017, 358, 29-38.	7.8	30
99	Effects of Annealing Conditions on Mixed Lead Halide Perovskite Solar Cells and Their Thermal Stability Investigation. Materials, 2017, 10, 837.	2.9	30
100	Device Simulation of Organic–Inorganic Halide Perovskite/Crystalline Silicon Four-Terminal Tandem Solar Cell With Various Antireflection Materials. IEEE Journal of Photovoltaics, 2018, 8, 1685-1691.	2.5	30
101	Synergetic surface charge transfer doping and passivation toward high efficient and stable perovskite solar cells. IScience, 2021, 24, 102276.	4.1	30
102	Inverted Organic Photovoltaic Cells with Solution-Processed Zinc Oxide as Electron Collecting Layer. Japanese Journal of Applied Physics, 2011, 50, 082302.	1.5	30
103	Water induced zinc oxide thin film formation and its transistor performance. Journal of Materials Chemistry C, 2014, 2, 5397-5403.	5.5	29
104	Thiophene–tetrafluorophenyl–thiophene: a promising building block for ambipolar organic field effect transistors. Journal of Materials Chemistry C, 2015, 3, 2080-2085.	5.5	29
105	Effect of pre-imidization on the structures and properties of polyimide fibers. RSC Advances, 2015, 5, 69555-69566.	3.6	29
106	High-Mobility Ambipolar Organic Thin-Film Transistor Processed From a Nonchlorinated Solvent. ACS Applied Materials & Interfaces, 2016, 8, 24325-24330.	8.0	29
107	A 800 V βâ€Ga ₂ O ₃ Metal–Oxide–Semiconductor Fieldâ€Effect Transistor with Highâ€Power Figure of Merit of Over 86.3 MW cm ^{â^'2} . Physica Status Solidi (A) Application and Materials Science, 2019, 216, 1900421.	ו 1.8	29
108	Reducing Defects in Perovskite Solar Cells with White Light Illumination-Assisted Synthesis. ACS Energy Letters, 2019, 4, 2821-2829.	17.4	29

#	Article	IF	CITATIONS
109	Flux-mediated growth strategy enables low-temperature fabrication of high-efficiency all-inorganic CsPbIBr2 perovskite solar cells. Electrochimica Acta, 2020, 330, 135325.	5.2	29
110	Deepâ€Ultraviolet Photoactivationâ€Assisted Contact Engineering Toward Highâ€Efficiency and Stable Allâ€Inorganic CsPbI ₂ Br Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000001.	5.8	29
111	Structures and properties of polyimide fibers containing fluorine groups. RSC Advances, 2015, 5, 71425-71432.	3.6	28
112	Simultaneouly enhanced durability and performance by employing dopamine copolymerized PEDOT with high work function and water-proofness for inverted perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 2311-2318.	5.5	28
113	Sacrificial additive-assisted film growth endows self-powered CsPbBr ₃ photodetectors with ultra-low dark current and high sensitivity. Journal of Materials Chemistry C, 2020, 8, 209-218.	5.5	28
114	Incorporating TCNQ into Thiophene-Fused Heptacene for n-Channel Field Effect Transistor. Organic Letters, 2012, 14, 2786-2789.	4.6	27
115	Interfacial TiO2 atomic layer deposition triggers simultaneous crystallization control and band alignment for efficient CsPbIBr2 perovskite solar cell. Organic Electronics, 2019, 74, 103-109.	2.6	27
116	Synergistic Interface Layer Optimization and Surface Passivation with Fluorocarbon Molecules toward Efficient and Stable Inverted Planar Perovskite Solar Cells. Research, 2021, 2021, 9836752.	5.7	27
117	Reducing the interfacial energy loss via oxide/perovskite heterojunction engineering for high efficient and stable perovskite solar cells. Chemical Engineering Journal, 2021, 417, 129184.	12.7	27
118	Double Side Interfacial Optimization for Lowâ€Temperature Stable CsPbI ₂ Br Perovskite Solar Cells with High Efficiency Beyond 16%. Energy and Environmental Materials, 2022, 5, 637-644.	12.8	27
119	Defects and doping engineering towards high performance lead-free or lead-less perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 420-438.	12.9	27
120	Room temperature ferroelectricity of hybrid organic–inorganic perovskites with mixed iodine and bromine. Journal of Materials Chemistry A, 2018, 6, 9665-9676.	10.3	26
121	Disappeared deep charge-states transition levels in the p-type intrinsic CsSnCl3 perovskite. Applied Physics Letters, 2019, 114, .	3.3	26
122	The crystal anisotropy effect of MAPbI3 perovskite on optoelectronic devices. Materials Today Energy, 2020, 17, 100481.	4.7	26
123	Ultrawide Band Gap Oxide Semiconductor-Triggered Performance Improvement of Perovskite Solar Cells via the Novel Ga ₂ O ₃ /SnO ₂ Composite Electron-Transporting Bilayer. ACS Applied Materials & Interfaces, 2020, 12, 54703-54710.	8.0	26
124	Metal oxide heterojunctions for high performance solution grown oxide thin film transistors. Applied Surface Science, 2020, 527, 146774.	6.1	26
125	Solution-processable n-type and ambipolar semiconductors based on a fused cyclopentadithiophenebis(dicyanovinylene) core. Chemical Communications, 2013, 49, 7135.	4.1	25
126	Effect of polyelectrolyte interlayer on efficiency and stability of p-i-n perovskite solar cells. Solar Energy, 2016, 139, 190-198.	6.1	25

#	Article	IF	CITATIONS
127	Suppressing intrinsic self-doping of CsPbIBr ₂ films for high-performance all-inorganic, carbon-based perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 4506-4515.	4.9	25
128	Toward High-Performance Electron/Hole-Transporting-Layer-Free, Self-Powered CsPbIBr ₂ Photodetectors via Interfacial Engineering. ACS Applied Materials & Interfaces, 2020, 12, 6607-6614.	8.0	25
129	Performance Comparison of Conventional and Inverted Organic Bulk Heterojunction Solar Cells From Optical and Electrical Aspects. IEEE Transactions on Electron Devices, 2013, 60, 451-457.	3.0	24
130	Highly efficient perovskite solar cells based on a dopant-free conjugated DPP polymer hole transport layer: influence of solvent vapor annealing. Sustainable Energy and Fuels, 2018, 2, 2154-2159.	4.9	24
131	Efficient planar perovskite solar cells with low-temperature atomic layer deposited TiO2 electron transport layer and interfacial modifier. Solar Energy, 2019, 188, 239-246.	6.1	24
132	Spontaneously Micropatterned Silk/Gelatin Scaffolds with Topographical, Biological, and Electrical Stimuli for Neuronal Regulation. ACS Biomaterials Science and Engineering, 2020, 6, 1144-1153.	5.2	24
133	Contact barriers modulation of graphene/β-Ga2O3 interface for high-performance Ga2O3 devices. Applied Surface Science, 2020, 527, 146740.	6.1	24
134	Surface functionalization modulates the structural and optoelectronic properties of two-dimensional Ga2O3. Materials Today Physics, 2020, 12, 100192.	6.0	24
135	Inverted Organic Solar Cells with Low-Temperature Al-Doped-ZnO Electron Transport Layer Processed from Aqueous Solution. Polymers, 2018, 10, 127.	4.5	23
136	Efficient Ni/Au Mesh Transparent Electrodes for ITO-Free Planar Perovskite Solar Cells. Nanomaterials, 2019, 9, 932.	4.1	23
137	Dithiol surface treatment towards improved charge transfer dynamic and reduced lead leakage in lead halide perovskite solar cells. EcoMat, 2022, 4, .	11.9	23
138	Efficient "Light-soaking―free Inverted Organic Solar Cells with Aqueous Solution Processed Low-Temperature ZnO Electron Extraction Layers. ACS Applied Materials & Interfaces, 2013, 5, 13318-13324.	8.0	22
139	Enhanced planar heterojunction perovskite solar cell performance and stability using PDDA polyelectrolyte capping agent. Solar Energy Materials and Solar Cells, 2017, 172, 133-139.	6.2	22
140	Investigation of Fe ²⁺ -incorporating organic–inorganic hybrid perovskites from first principles and experiments. RSC Advances, 2017, 7, 54586-54593.	3.6	22
141	High performance transient organic solar cells on biodegradable polyvinyl alcohol composite substrates. RSC Advances, 2017, 7, 52930-52937.	3.6	22
142	Low temperature combustion synthesized indium oxide electron transport layer for high performance and stable perovskite solar cells. Journal of Power Sources, 2019, 438, 226981.	7.8	22
143	Understanding the Potential of 2D Ga 2 O 3 in Flexible Optoelectronic Devices: Impact of Uniaxial Strain and Electric Field. Advanced Theory and Simulations, 2019, 2, 1900106.	2.8	22
144	Beneficial Role of Organolead Halide Perovskite CH ₃ NH ₃ Pbl ₃ /SnO ₂ Interface: Theoretical and Experimental Study. Advanced Materials Interfaces, 2019, 6, 1900400.	3.7	22

#	Article	IF	CITATIONS
145	Secondary crystallization strategy for highly efficient inorganic CsPbI2Br perovskite solar cells with efficiency approaching 17%. Journal of Energy Chemistry, 2021, 63, 558-565.	12.9	22
146	Cs2Til6: A potential lead-free all-inorganic perovskite material for ultrahigh-performance photovoltaic cells and alpha-particle detection. Nano Research, 2022, 15, 2697-2705.	10.4	22
147	TiOx/Al bilayer as cathode buffer layer for inverted organic solar cell. Applied Physics Letters, 2013, 103, .	3.3	21
148	Pro-aromatic bisphenaleno-thieno[3,2-b]thiophene versus anti-aromatic bisindeno-thieno[3,2-b]thiophene: different ground-state properties and applications in field-effect transistors. Chemical Communications, 2015, 51, 13178-13180.	4.1	21
149	Theoretical Studies of Electronic and Optical Behaviors of All-Inorganic CsPbI ₃ and Two-Dimensional MS ₂ (M = Mo, W) Heterostructures. Journal of Physical Chemistry C, 2019, 123, 7158-7165.	3.1	21
150	Multilevel oxygen-vacancy conductive filaments in β-Ga ₂ O ₃ based resistive random access memory. Physical Chemistry Chemical Physics, 2021, 23, 5975-5983.	2.8	21
151	Ultra-high temperature tolerant flexible transparent electrode with embedded silver nanowires bundle micromesh for electrical heater. Npj Flexible Electronics, 2022, 6, .	10.7	21
152	Controlling aggregation and crystallization of solution processed diketopyrrolopyrrole based polymer for high performance thin film transistors by pre-metered slot die coating process. Organic Electronics, 2016, 36, 113-119.	2.6	20
153	A PCBM-Modified TiO ₂ Blocking Layer towards Efficient Perovskite Solar Cells. International Journal of Photoenergy, 2017, 2017, 1-9.	2.5	20
154	High efficient ITO free inverted organic solar cells based on ultrathin Ca modified AZO cathode and their light soaking issue. Organic Electronics, 2014, 15, 3006-3015.	2.6	19
155	High-Performance Simple-Structured Planar Heterojunction Perovskite Solar Cells Achieved by Precursor Optimization. ACS Omega, 2017, 2, 6250-6258.	3.5	19
156	Theoretical and Experimental Investigation of Mixed Pb–In Halide Perovskites. Journal of Physical Chemistry C, 2018, 122, 15945-15953.	3.1	19
157	Allâ€Inorganic CsPbl <i>_x</i> Br _{3â^²} <i>_x</i> Perovskite Solar Cells: Crystal Anisotropy Effect. Advanced Theory and Simulations, 2020, 3, 2000055.	2.8	19
158	An Exploration of Allâ€Inorganic Perovskite/Gallium Arsenide Tandem Solar Cells. Solar Rrl, 2021, 5, 2100121.	5.8	19
159	Flexible perovskite solar cells: Material selection and structure design. Applied Physics Reviews, 2022, 9, .	11.3	19
160	Improve the Operational Stability of the Inverted Organic Solar Cells Using Bilayer Metal Oxide Structure. ACS Applied Materials & Interfaces, 2014, 6, 18861-18867.	8.0	18
161	Effects of Interfacial Passivation on the Electrical Performance, Stability, and Contact Properties of Solution Process Based ZnO Thin Film Transistors. Materials, 2018, 11, 1761.	2.9	18
162	Reducing the acceptor levels of p-type Î ² -Ga2O3 by (metal, N) co-doping approach. Journal of Alloys and Compounds, 2021, 854, 157247.	5.5	18

#	Article	IF	CITATIONS
163	A new all-inorganic vacancy-ordered double perovskite Cs2CrI6 for high-performance photovoltaic cells and alpha-particle detection in space environment. Materials Today Physics, 2021, 20, 100446.	6.0	18
164	97.3% Pb-Reduced CsPb _{1–<i>x</i>} Ge _{<i>x</i>} Br ₃ Perovskite with Enhanced Phase Stability and Photovoltaic Performance through Surface Cu Doping. Journal of Physical Chemistry Letters, 2021, 12, 1098-1103.	4.6	18
165	Solutionâ€Processable nâ€Type Semiconductors Based on Unsymmetrical Naphthalene Imides: Synthesis, Characterization, and Applications in Fieldâ€Effect Transistors. Chemistry - an Asian Journal, 2014, 9, 253-260.	3.3	17
166	Bright red-emitting polymer dots for specific cellular imaging. Journal of Materials Science, 2015, 50, 5571-5577.	3.7	17
167	Acenaphthylene-imide based small molecules/TiO2 bilayer as electron-transporting layer for solution-processing efficient perovskite solar cells. Science China Materials, 2019, 62, 497-507.	6.3	17
168	High-Performance, Vacuum-Free, and Self-Powered CsPbIBr ₂ Photodetectors Boosted by Ultra-Wide-Bandgap Ga ₂ O ₃ Interlayer. IEEE Electron Device Letters, 2020, 41, 1532-1535.	3.9	17
169	Solution processed In2O3/IGO heterojunction thin film transistors with high carrier concentration. Ceramics International, 2021, 47, 35029-35036.	4.8	17
170	Low-Temperature Solution-Processed Cu ₂ AgBil ₆ Films for High Performance Photovoltaics and Photodetectors. ACS Applied Materials & Interfaces, 2022, 14, 18498-18505.	8.0	17
171	Controllable Self-Assembly of PTCDI-C8 for High Mobility Low-Dimensional Organic Field-Effect Transistors. ACS Applied Electronic Materials, 2019, 1, 2030-2036.	4.3	16
172	Improved Interface Contact for Highly Stable All-Inorganic CsPbI ₂ Br Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 5173-5181.	5.1	16
173	Highly transparent flexible artificial nociceptor based on forming-free ITO memristor. Applied Physics Letters, 2022, 120, .	3.3	16
174	A phthalimide-fused naphthalene diimide with high electron affinity for a high performance n-channel field effect transistor. RSC Advances, 2013, 3, 6775.	3.6	15
175	Zâ€Shaped Pentalenoâ€Acene Dimers with High Stability and Small Band Gap. Angewandte Chemie, 2016, 128, 2743-2746.	2.0	15
176	Pressureâ€Dependent Mechanical and Thermal Properties of Leadâ€Free Halide Double Perovskite Cs ₂ AgB″X ₆ (B″â•In, Bi; Xâ•Cl, Br, I). Advanced Theory and Simulations, 2019, 2, 1900164.	2.8	15
177	Synchronous Interface Modification and Bulk Passivation via a One-Step Cesium Bromide Diffusion Process for Highly Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 10110-10119.	8.0	15
178	Impurity level properties in transition metal doped α-Ga ₂ O ₃ for optoelectronic applications. Semiconductor Science and Technology, 0, , .	2.0	15
179	Promising applications of wide bandgap inorganic perovskites in underwater photovoltaic cells. Solar Energy, 2022, 233, 489-493.	6.1	15
180	Flexible ITO-Free Organic Solar Cells Based on <named-content <br="" content-type="math">xlink:type="simple"> <inline-formula> <tex-math notation="TeX">\$hbox{MoO}_{3}/hbox{Ag}\$</tex-math </inline-formula></named-content> Anodes. IEEE Photonics Journal, 2015, 7, 1-9.	2.0	14

#	Article	IF	CITATIONS
181	Intermediate Phase Intermolecular Exchange Triggered Defect Elimination in CH3NH3PbI3 toward Room-Temperature Fabrication of Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 40378-40385.	8.0	14
182	Low temperature ZnO/TiOx electron-transport layer processed from aqueous solution for highly efficient and stable planar perovskite solar cells. Materials Today Energy, 2019, 14, 100351.	4.7	14
183	Unusual properties and potential applications of strain BN-MS2 (M = Mo, W) heterostructures. Scientific Reports, 2019, 9, 3518.	3.3	14
184	Annealingâ€Free, Highâ€Performance Perovskite Solar Cells by Controlling Crystallization via Guanidinium Cation Doping. Solar Rrl, 2021, 5, 2100097.	5.8	13
185	Intermediate Phaseâ€Assisted Sequential Deposition Toward 15.24%â€Efficiency Carbonâ€Electrode Cspbi ₂ br Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	13
186	Enhanced Performance and Stability of Polymer Solar Cells by In Situ Formed AlO _{<i>x</i>} Passivation and Doping. Journal of Physical Chemistry C, 2017, 121, 10275-10281.	3.1	12
187	A Modulated Doubleâ€Passivation Strategy Toward Highly Efficient Perovskite Solar Cells with Efficiency Over 21%. Solar Rrl, 2019, 3, 1900291.	5.8	12
188	Combustion-processed NiO/ALD TiO2 bilayer as a novel low-temperature electron transporting material for efficient all-inorganic CsPbIBr2 solar cell. Solar Energy, 2020, 203, 10-18.	6.1	12
189	Two-Dimensional (C ₆ H ₅ C ₂ H ₄ NH ₃) ₂ PbI _{4Perovskite Single Crystal Resistive Switching Memory Devices. IEEE Electron Device Letters, 2021, 42, 327-330}	^{)>} 3.9	12
190	Aqueous Solution Derived Amorphous Indium Doped Gallium Oxide Thin-Film Transistors. IEEE Journal of the Electron Devices Society, 2021, 9, 373-377.	2.1	12
191	Dithieno-naphthalimide based copolymers for air-stable field effect transistors: synthesis, characterization and device performance. Journal of Materials Chemistry, 2012, 22, 21201.	6.7	11
192	Efficient inverted polymer solar cells using low-temperature zinc oxide interlayer processed from aqueous solution. Japanese Journal of Applied Physics, 2015, 54, 042301.	1.5	11
193	Enhancing material quality and device performance of perovskite solar cells via a facile regrowth way assisted by the DMF/Chlorobenzene mixed solution. Organic Electronics, 2019, 70, 300-305.	2.6	11
194	A Facile Way to Improve the Performance of Perovskite Solar Cells by Toluene and Diethyl Ether Mixed Anti-Solvent Engineering. Coatings, 2019, 9, 766.	2.6	11
195	Highly efficient bifacial CsPblBr ₂ solar cells with a TeO ₂ /Ag transparent electrode and unsymmetrical carrier transport behavior. Dalton Transactions, 2020, 49, 6012-6019.	3.3	11
196	Carbon-based, all-inorganic, lead-free Ag2BiI5 rudorffite solar cells with high photovoltages. Solid-State Electronics, 2021, 176, 107950.	1.4	11
197	Investigation of Controlled Current Matching in Polymer Tandem Solar Cells Considering Different Layer Sequences and Optical Spacer. Japanese Journal of Applied Physics, 2012, 51, 122301.	1.5	11
198	Alleviating hysteresis and improving efficiency of MA1â´'yFAyPbI3â´'xBrx perovskite solar cells by controlling the halide composition. Journal of Materials Science, 2018, 53, 16500-16510.	3.7	10

#	Article	IF	CITATIONS
199	Understanding the transport and contact properties of metal/BN-MoS2 interfaces to realize high performance MoS2 FETs. Journal of Alloys and Compounds, 2019, 771, 1052-1061.	5.5	10
200	Dipole-templated homogeneous grain growth of CsPbIBr2 films for efficient self-powered, all-inorganic photodetectors. Solar Energy, 2020, 209, 371-378.	6.1	10
201	Slow halide exchange in CsPbIBr2 films for high-efficiency, carbon-based, all-inorganic perovskite solar cells. Science China Materials, 2021, 64, 2107-2117.	6.3	10
202	Generic water-based spray-assisted growth for scalable high-efficiency carbon-electrode all-inorganic perovskite solar cells. IScience, 2021, 24, 103365.	4.1	10
203	Band alignments tuned by spontaneous polarization in two-dimensional MoS2/GaN van der Waals heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 143, 115360.	2.7	10
204	Biodegradable poly(<i>p</i> â€dioxanone) reinforced and toughened by organoâ€modified vermiculite. Polymers for Advanced Technologies, 2011, 22, 993-1000.	3.2	9
205	Effects of contact treatments on solution-processed n-type dicyano-ovalenediimide and its complementary circuits. RSC Advances, 2013, 3, 8721.	3.6	9
206	Low Temperature Aqueous Solution-Processed ZnO and Polyethylenimine Ethoxylated Cathode Buffer Bilayer for High Performance Flexible Inverted Organic Solar Cells. Energies, 2017, 10, 494.	3.1	9
207	A non-equilibrium Ti ⁴⁺ doping strategy for an efficient hematite electron transport layer in perovskite solar cells. Dalton Transactions, 2018, 47, 6404-6411.	3.3	9
208	Simultaneously enhanced performance and stability of inverted perovskite solar cells via a rational design of hole transport layer. Organic Electronics, 2019, 73, 69-75.	2.6	9
209	N-Substituted Phenothiazines as Environmentally Friendly Hole-Transporting Materials for Low-Cost and Highly Stable Halide Perovskite Solar Cells. ACS Omega, 2020, 5, 23334-23342.	3.5	9
210	High Performance Planar Structure Perovskite Solar Cells Using a Solvent Dripping Treatment on Hole Transporting Layer. Coatings, 2020, 10, 127.	2.6	9
211	Isoindigo-Based Small Molecules with Varied Donor Components for Solution-Processable Organic Field Effect Transistor Devices. Molecules, 2015, 20, 17362-17377.	3.8	8
212	Organic Field-Effect Transistor: Device Physics, Materials, and Process. , 0, , .		8
213	Performance enhancement of perovskite solar cells <i>via</i> material quality improvement assisted by MAI/IPA solution post-treatment. Dalton Transactions, 2019, 48, 5292-5298.	3.3	8
214	Aqueous solution-deposited aluminum-gallium-oxide alloy gate dielectrics for low voltage fully oxide thin film transistors. Applied Physics Letters, 2021, 119, .	3.3	8
215	High-Purity, Thick CsPbCl ₃ Films toward Selective Ultraviolet-Harvesting Visibly Transparent Photovoltaics. ACS Applied Energy Materials, 2021, 4, 12121-12127.	5.1	8
216	TCNQ-embedded heptacene and nonacene: synthesis, characterization and physical properties. Organic and Biomolecular Chemistry, 2013, 11, 6285.	2.8	7

#	Article	IF	CITATIONS
217	Efficient indium-tin-oxide free inverted organic solar cells based on aluminum-doped zinc oxide cathode and low-temperature aqueous solution processed zinc oxide electron extraction layer. Applied Physics Letters, 2014, 104, .	3.3	7
218	Pyromellitic diimideâ€based copolymers for ambipolar fieldâ€effect transistors: Synthesis, characterization, and device applications. Journal of Polymer Science Part A, 2014, 52, 2454-2464.	2.3	7
219	Experimental study and simulation analysis on friction behavior of a mechanical surface sliding on hard particles. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231, 1371-1379.	1.8	7
220	Efficient Semitransparent Perovskite Solar Cells Using a Transparent Silver Electrode and Four-Terminal Perovskite/Silicon Tandem Device Exploration. Journal of Nanomaterials, 2018, 2018, 1-8.	2.7	7
221	Tuning the intrinsic electric field of Janus-TMDs to realize high-performance β-Ga2O3 device based on β-Ga2O3/Janus-TMD heterostructures. Materials Today Physics, 2021, 21, 100549.	6.0	7
222	Thin-Film Transistors from Electrochemically Exfoliated In2Se3 Nanosheets. Micromachines, 2022, 13, 956.	2.9	7
223	Stability of inverted organic solar cells with lowâ€ŧemperature ZnO buffer layer processed from aqueous solution. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2262-2270.	1.8	6
224	Efficient flexible inverted small-bandgap organic solar cells with low-temperature zinc oxide interlayer. Japanese Journal of Applied Physics, 2016, 55, 122302.	1.5	6
225	Simulation study towards high performance transparent-conductive-oxide free perovskite solar cells using metal microcavity and optical coupling layer. IEEE Photonics Journal, 2018, , 1-1.	2.0	6
226	Interfacial transport modulation by intrinsic potential difference of janus TMDs based on CsPbI3/J-TMDs heterojunctions. IScience, 2022, 25, 103872.	4.1	6
227	ITO-Free Semitransparent Organic Solar Cells Based on Silver Thin Film Electrodes. International Journal of Photoenergy, 2014, 2014, 1-7.	2.5	5
228	Enhancing Perovskite Solar Cell Performance through Surface Engineering of Metal Oxide Electron-Transporting Layer. Coatings, 2020, 10, 46.	2.6	5
229	Tailored interfacial crystal facets for efficient CH3NH3PbI3 perovskite solar cells. Organic Electronics, 2020, 78, 105598.	2.6	5
230	Improving electron extraction ability and suppressing recombination of planar perovskite solar cells with the triple cascade electron transporting layer. Solar Energy Materials and Solar Cells, 2020, 208, 110419.	6.2	5
231	Combining in-situ formed PbI2 passivation and secondary passivation for highly efficient and stable planar heterojunction perovskite solar cells. Organic Electronics, 2022, 100, 106361.	2.6	5
232	PROPERTIES OF POLY(<i>p</i> â€ÐIOXANONEâ€URETHANE) COPOLYMERS WITH CONTROLLABLE STRUCTURES. Soft Materials, 2009, 7, 277-295.	1.7	4
233	Bisacenaphthopyrazinoquinoxaline derivatives: synthesis, physical properties and applications as semiconductors for n-channel field effect transistors. Organic and Biomolecular Chemistry, 2013, 11, 5683.	2.8	4
234	Orderly Nanopatterned Indium Tin Oxide Electrode Combined with Atomicâ€Layerâ€Deposited Metal Oxide Interlayer for Inverted Organic Solar Cells. Energy Technology, 2015, 3, 906-912.	3.8	4

#	Article	IF	CITATIONS
235	Investigation on the structural, morphological, electronic and photovoltaic properties of a perovskite thin film by introducing lithium halide. RSC Advances, 2018, 8, 11455-11461.	3.6	4
236	Simple and Convenient Interface Modification by Nanosized Diamond for Carbon Based All-Inorganic CsPbIBr ₂ Solar Cells. ACS Applied Energy Materials, 2021, 4, 5661-5667.	5.1	4
237	Influence of Oxygen on β-Ga ₂ O ₃ Films Deposited on Sapphire Substrates by MOCVD. ECS Journal of Solid State Science and Technology, 2021, 10, 075009.	1.8	4
238	Charge-selective-contact-dependent halide phase segregation in CsPbIBr2 perovskite solar cells and its correlation to device degradation. Applied Surface Science, 2022, 595, 153544.	6.1	4
239	Efficient planar heterojunction solar cell employing CH ₃ NH ₃ Pbl ₂₊ <i>_x</i> Cl _{1â^'} <i>_x</i> halide perovskite utilizing modified sequential deposition. Japanese Journal of Applied Physics, 2015, 54, 092301.	/i>mixed 1.5	3
240	Performance Improvement of All-Inorganic, Hole-Transport-Layer-Free Perovskite Solar Cells Through Dipoles-Adjustion by Polyethyleneimine Incorporating. IEEE Electron Device Letters, 2021, 42, 537-540.	3.9	3
241	Unveiling the Relationship between Passivation Groups and the Structural and Optoelectronic Performances of Perovskite Surfaces and Devices. Journal of Physical Chemistry C, 2022, 126, 597-604.	3.1	3
242	Stable Inverted Low-Bandgap Polymer Solar Cells with Aqueous Solution Processed Low-Temperature ZnO Buffer Layers. International Journal of Photoenergy, 2016, 2016, 1-7.	2.5	2
243	High-Performance Low-Bandgap Polymer Solar Cells With Optical Microcavity Employing Ultrathin Ag Film Electrode. IEEE Photonics Journal, 2016, 8, 1-12.	2.0	2
244	Modulation of the transport properties of metal/MoS2 interfaces using BN-graphene lateral tunneling layers. Nanotechnology, 2020, 31, 485204.	2.6	2
245	Impacts of the Electron Transport Layer Surface Reconstruction on the Buried Interface in Perovskite Optoelectronic Devices. Journal of Physical Chemistry Letters, 2021, 12, 11834-11842.	4.6	2
246	<i>In situ</i> , seed-free formation of a Ruddlesden–Popper perovskite Cs ₂ PbI ₂ Cl ₂ nanowires/PbI ₂ heterojunction for a high-responsivity, self-powered photodetector. Journal of Materials Chemistry C, 2022, 10, 3538-3546.	5.5	2
247	Comparison of Ga2O3 Films Grown on m- and r-plane Sapphire Substrates by MOCVD. ECS Journal of Solid State Science and Technology, 2020, 9, 125008.	1.8	1
248	Transparent Ultrathin Metal Electrode with Microcavity Configuration for Highly Efficient TCO-Free Perovskite Solar Cells. Materials, 2020, 13, 2328.	2.9	1
249	Reveal the large open-circuit voltage deficit of all-inorganic CsPblBr ₂ perovskite solar cells. Chinese Physics B, 2022, 31, 038804.	1.4	1
250	1.1% DMF incorporation in MAI/IPA precursor for 50% efficiency enhancement of planar perovskite solar cells. , 2016, , .		0
251	Efficient Inverted ITO-Free Organic Solar Cells Based on Transparent Silver Electrode with Aqueous Solution-Processed ZnO Interlayer. International Journal of Photoenergy, 2017, 2017, 1-6.	2.5	0
252	Back Cover Image. InformaÄnÃ-Materiály, 2021, 3, .	17.3	0

#	Article	IF	CITATIONS
253	Special issue on Perovskite materials. Journal of Materials Science: Materials in Electronics, 2021, 32, 12745-12745.	2.2	0
254	InGaN multiple quantum well solar cells on a patterned sapphire substrate. , 2015, , .		0
255	Investigation of self-doping in perovskites with vacancy defects based on first principles. Chinese Optics, 2019, 12, 1048-1056.	0.6	0
256	Research progress of printed perovskite solar cells. Chinese Optics, 2019, 12, 1015-1027.	0.6	0
257	Optimize the Oxide/Perovskite Heterojunction Contact for Low Temperature High Efficiency and Stable All-inorganic CsPbI2Br Perovskite Solar Cells. , 2020, , .		0