James R Bamburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8984610/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteins of the ADF/Cofilin Family: Essential Regulators of Actin Dynamics. Annual Review of Cell and Developmental Biology, 1999, 15, 185-230.	9.4	913
2	ADF/Cofilin: a functional node in cell biology. Trends in Cell Biology, 2010, 20, 187-195.	7.9	617
3	Reactivation of Phosphorylated Actin Depolymerizing Factor and Identification of the Regulatory Site. Journal of Biological Chemistry, 1995, 270, 17582-17587.	3.4	339
4	Neurodegenerative stimuli induce persistent ADF/cofilin–actin rods that disrupt distal neurite function. Nature Cell Biology, 2000, 2, 628-636.	10.3	338
5	ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nature Neuroscience, 2010, 13, 1208-1215.	14.8	275
6	Interplay between components of a novel LIM kinase–slingshot phosphatase complex regulates cofilin. EMBO Journal, 2005, 24, 473-486.	7.8	265
7	ADF/cofilin and actin dynamics in disease. Trends in Cell Biology, 2002, 12, 598-605.	7.9	251
8	Cdc42 Regulates Cofilin during the Establishment of Neuronal Polarity. Journal of Neuroscience, 2007, 27, 13117-13129.	3.6	235
9	Tropomyosin binding to F-actin protects the F-actin from disassembly by brain actin-depolymerizing factor (ADF). Cell Motility, 1982, 2, 1-8.	1.8	234
10	Actin depolymerizing factor and cofilin phosphorylation dynamics: Response to signals that regulate neurite extension. , 1998, 39, 172-190.		224
11	Xenopus Actin Depolymerizing Factor/Cofilin (XAC) Is Responsible for the Turnover of Actin Filaments in Listeria monocytogenes Tails. Journal of Cell Biology, 1997, 136, 1323-1332.	5.2	219
12	ADF/Cofilin-Mediated Actin Retrograde Flow Directs Neurite Formation in the Developing Brain. Neuron, 2012, 76, 1091-1107.	8.1	198
13	BMP gradients steer nerve growth cones by a balancing act of LIM kinase and Slingshot phosphatase on ADF/cofilin. Journal of Cell Biology, 2007, 178, 107-119.	5.2	166
14	Regulating actin dynamics in neuronal growth cones by ADF/cofilin and Rho family GTPases. Journal of Neurobiology, 2000, 44, 126-144.	3.6	163
15	Cytoskeletal pathologies of Alzheimer disease. Cytoskeleton, 2009, 66, 635-649.	4.4	152
16	Roles of ADF/cofilin in actin polymerization and beyond. F1000 Biology Reports, 2010, 2, 62.	4.0	137
17	Actin dynamics and cofilinâ€actin rods in alzheimer disease. Cytoskeleton, 2016, 73, 477-497.	2.0	132
18	Growth coneâ€like waves transport actin and promote axonogenesis and neurite branching. Developmental Neurobiology, 2009, 69, 761-779.	3.0	127

#	Article	IF	CITATIONS
19	Â-Secretase-Cleaved Amyloid Precursor Protein Accumulates at Actin Inclusions Induced in Neurons by Stress or Amyloid Â: A Feedforward Mechanism for Alzheimer's Disease. Journal of Neuroscience, 2005, 25, 11313-11321.	3.6	125
20	Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease. Human Molecular Genetics, 2011, 20, 1937-1951.	2.9	121
21	Formation of actin-ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons. American Journal of Physiology - Cell Physiology, 2006, 291, C828-C839.	4.6	109
22	Cdc42 stimulates neurite outgrowth and formation of growth cone filopodia and lamellipodia. Journal of Neurobiology, 2000, 43, 352-364.	3.6	95
23	ADF/Cofilin Regulates Actomyosin Assembly through Competitive Inhibition of Myosin II Binding to F-Actin. Developmental Cell, 2012, 22, 530-543.	7.0	94
24	Chronophin Mediates an ATP-Sensing Mechanism for Cofilin Dephosphorylation and Neuronal Cofilin-Actin Rod Formation. Developmental Cell, 2008, 15, 691-703.	7.0	85
25	Activated Actin-Depolymerizing Factor/Cofilin Sequesters Phosphorylated Microtubule-Associated Protein during the Assembly of Alzheimer-Like Neuritic Cytoskeletal Striations. Journal of Neuroscience, 2009, 29, 12994-13005.	3.6	84
26	Translation of Pre-Clinical Studies into Successful Clinical Trials for Alzheimer's Disease: What are the Roadblocks and How Can They Be Overcome?1. Journal of Alzheimer's Disease, 2015, 47, 815-843.	2.6	84
27	Rac1-dependent actin filament organization in growth cones is necessary for ?1-integrin-mediated advance but not for growth on poly-D-lysine. Journal of Neurobiology, 1998, 37, 524-540.	3.6	82
28	In Vitro Activity Differences between Proteins of the ADF/Cofilin Family Define Two Distinct Subgroupsâ€. Biochemistry, 2004, 43, 7127-7142.	2.5	79
29	Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintaining cofilin-phosphorylation. Molecular Neurodegeneration, 2011, 6, 10.	10.8	77
30	Activation of ADF/cofilin mediates attractive growth cone turning toward nerve growth factor and netrinâ€1. Developmental Neurobiology, 2010, 70, 565-588.	3.0	71
31	Isolation and Characterization of Cytoplasmic Cofilin-Actin Rods. Journal of Biological Chemistry, 2010, 285, 5450-5460.	3.4	66
32	Incorporation of Cofilin into Rods Depends on Disulfide Intermolecular Bonds: Implications for Actin Regulation and Neurodegenerative Disease. Journal of Neuroscience, 2012, 32, 6670-6681.	3.6	66
33	Mechanisms underlying intranuclear rod formation. Brain, 2007, 130, 3275-3284.	7.6	63
34	Cofilin-2 Phosphorylation and Sequestration in Myocardial Aggregates. Journal of the American College of Cardiology, 2015, 65, 1199-1214.	2.8	62
35	Mapping Cofilin-Actin Rods in Stressed Hippocampal Slices and the Role of cdc42 in Amyloid-β-Induced Rods. Journal of Alzheimer's Disease, 2009, 18, 35-50.	2.6	58
36	Amyloid-β and Proinflammatory Cytokines Utilize a Prion Protein-Dependent Pathway to Activate NADPH Oxidase and Induce Cofilin-Actin Rods in Hippocampal Neurons. PLoS ONE, 2014, 9, e95995.	2.5	58

JAMES R BAMBURG

#	Article	IF	CITATIONS
37	lschemic injury induces ADF relocalization to the apical domain of rat proximal tubule cells. American Journal of Physiology - Renal Physiology, 2001, 280, F886-F894.	2.7	52
38	ADF/Cofilin. Current Biology, 2008, 18, R273-R275.	3.9	50
39	Neuronal survival activity of S100ββ is enhanced by calcineurin inhibitors and requires activation of NFâ€ÎºB. FASEB Journal, 1999, 13, 1611-1620.	0.5	49
40	Cofilin and Actin Dynamics: Multiple Modes of Regulation and Their Impacts in Neuronal Development and Degeneration. Cells, 2021, 10, 2726.	4.1	49
41	Non-overlapping activities of ADF and cofilin-1 during the migration of metastatic breast tumor cells. BMC Cell Biology, 2013, 14, 45.	3.0	45
42	Differential Regulation of Actin Depolymerizing Factor and Cofilin in Response to Alterations in the Actin Monomer Pool. Journal of Biological Chemistry, 1997, 272, 8303-8309.	3.4	44
43	Cofilin Regulates Nuclear Architecture through a Myosin-II Dependent Mechanotransduction Module. Scientific Reports, 2017, 7, 40953.	3.3	44
44	Peptide regulation of cofilin activity in the CNS: A novel therapeutic approach for treatment of multiple neurological disorders. , 2017, 175, 17-27.		43
45	Cotransport of glyceraldehyde-3-phosphate dehydrogenase and actin in axons of chicken motoneurons. Cellular and Molecular Neurobiology, 1999, 19, 733-744.	3.3	28
46	Slow Axonal Transport of Soluble Actin with Actin Depolymerizing Factor, Cofilin, and Profilin Suggests Actin Moves in an Unassembled Form. Journal of Neurochemistry, 2002, 67, 1225-1234.	3.9	27
47	Rapid Changes in Phospho-MAP/Tau Epitopes during Neuronal Stress: Cofilin-Actin Rods Primarily Recruit Microtubule Binding Domain Epitopes. PLoS ONE, 2011, 6, e20878.	2.5	26
48	Cofilin-actin rod formation in neuronal processes after brain ischemia. PLoS ONE, 2018, 13, e0198709.	2.5	24
49	Identification of two species of actin depolymerizing factor in cultures of BHK cells. Journal of Muscle Research and Cell Motility, 1988, 9, 320-328.	2.0	23
50	A Genetically Encoded Reporter for Real-Time Imaging of Cofilin-Actin Rods in Living Neurons. PLoS ONE, 2013, 8, e83609.	2.5	22
51	HIV Associated Neurodegenerative Disorders: A New Perspective on the Role of Lipid Rafts in Gp120-Mediated Neurotoxicity. Current HIV Research, 2019, 16, 258-269.	O.5	21
52	Cephalostatin 1 analogues activate apoptosis via the endoplasmic reticulum stress signaling pathway. European Journal of Pharmacology, 2018, 818, 400-409.	3.5	15
53	Direct interaction of HIV gp120 with neuronal CXCR4 and CCR5 receptors induces cofilin-actin rod pathology via a cellular prion protein- and NOX-dependent mechanism. PLoS ONE, 2021, 16, e0248309.	2.5	15
54	Sperm incorporation in Xenopus laevis: characterisation of morphological events and the role of microfilaments. Zygote, 2001, 9, 167-181.	1.1	12

JAMES R BAMBURG

#	Article	IF	CITATIONS
55	Introduction to Cytoskeletal Dynamics and Pathfinding of Neuronal Growth Cones. Journal of Histochemistry and Cytochemistry, 2003, 51, 407-409.	2.5	12
56	Lamin A/C deficiency enables increased myosin-II bipolar filament ensembles that promote divergent actomyosin network anomalies through self-organization. Molecular Biology of the Cell, 2020, 31, 2363-2378.	2.1	11
57	Cofilin-mediated neurodegeneration in alzheimer's disease and other amyloidopathies. Molecular Neurobiology, 2007, 35, 21-43.	4.0	10
58	Axonal microtubules stay put. Nature Cell Biology, 1999, 1, E171-E173.	10.3	7
59	<i>Listeria monocytogenes</i> cell invasion: a new role for cofilin in coâ€ordinating actin dynamics and membrane lipids. Molecular Microbiology, 2011, 81, 851-854.	2.5	7
60	Actin and Diseases of the Nervous System. Advances in Neurobiology, 2011, 5, 201-234.	1.8	6
61	Calcium-dependent regulation of interactions of caldesmon with calcium-binding proteins found in growth cones of chick forebrain neurons. Cellular and Molecular Neurobiology, 2001, 21, 437-451.	3.3	3
62	Modified Roller Tube Method for Precisely Localized and Repetitive Intermittent Imaging During Long-term Culture of Brain Slices in an Enclosed System. Journal of Visualized Experiments, 2017, , .	0.3	2
63	Regulating actin dynamics in neuronal growth cones by ADF/cofilin and Rho family GTPases. Journal of Neurobiology, 2000, 44, 126.	3.6	1