
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8983361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New cosmological constraints on primordial black holes. Physical Review D, 2010, 81, .	4.7	762
2	Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy. Experimental Astronomy, 2011, 32, 193-316.	3.7	640
3	Big-bang nucleosynthesis and hadronic decay of long-lived massive particles. Physical Review D, 2005, 71, .	4.7	633
4	Introducing the CTA concept. Astroparticle Physics, 2013, 43, 3-18.	4.3	504
5	The Japanese space gravitational wave antenna: DECIGO. Classical and Quantum Gravity, 2011, 28, 094011.	4.0	456
6	Constraints on primordial black holes. Reports on Progress in Physics, 2021, 84, 116902.	20.1	391
7	The Japanese space gravitational wave antenna—DECIGO. Classical and Quantum Gravity, 2006, 23, S125-S131.	4.0	388
8	Hadronic decay of late-decaying particles and big-bang nucleosynthesis. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 625, 7-12.	4.1	346
9	Big-bang nucleosynthesis and gravitinos. Physical Review D, 2008, 78, .	4.7	320
10	Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations. Physical Review D, 2018, 97, .	4.7	295
11	Cosmological Constraints on Late-time Entropy Production. Physical Review Letters, 1999, 82, 4168-4171.	7.8	282
12	Threshold of primordial black hole formation. Physical Review D, 2013, 88, .	4.7	258
13	CMB bounds on disk-accreting massive primordial black holes. Physical Review D, 2017, 96, .	4.7	196
14	LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection. Journal of Low Temperature Physics, 2019, 194, 443-452.	1.4	193
15	Neutrinoâ€dominated Accretion and Supernovae. Astrophysical Journal, 2005, 629, 341-361.	4.5	171
16	Can Neutrinoâ€cooled Accretion Disks Be an Origin of Gammaâ€Ray Bursts?. Astrophysical Journal, 2002, 577, 311-321.	4.5	170
17	Big-bang nucleosynthesis with unstable gravitino and upper bound on the reheating temperature. Physical Review D, 2006, 73, .	4.7	170
18	MeV-scale reheating temperature and thermalization of oscillating neutrinos by radiative and hadronic decays of massive particles. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 012-012	5.4	155

#	Article	IF	CITATIONS
19	Revisiting big-bang nucleosynthesis constraints on long-lived decaying particles. Physical Review D, 2018, 97, .	4.7	151
20	Current status of space gravitational wave antenna DECIGO and B-DECIGO. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	150
21	The status of DECIGO. Journal of Physics: Conference Series, 2017, 840, 012010.	0.4	148
22	Cosmic microwave background bounds on primordial black holes including dark matter halo accretion. Physical Review Research, 2020, 2, .	3.6	140
23	Extended Measurement of the Cosmic-Ray Electron and Positron Spectrum from 11ÂGeV to 4.8ÂTeV with the Calorimetric Electron Telescope on the International Space Station. Physical Review Letters, 2018, 120, 261102.	7.8	134
24	Instability of dark energy with mass-varying neutrinos. Physical Review D, 2005, 72, .	4.7	129
25	Solar-mass primordial black holes explain NANOGrav hint of gravitational waves. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 813, 136040.	4.1	124
26	Observable spectra of induced gravitational waves from inflation. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 017-017.	5.4	112
27	Radiative decay of a massive particle and the nonthermal process in primordial nucleosynthesis. Physical Review D, 2001, 63, .	4.7	111
28	Direct Measurement of the Cosmic-Ray Proton Spectrum from 50ÂGeV to 10ÂTeV with the Calorimetric Electron Telescope on the International Space Station. Physical Review Letters, 2019, 122, 181102.	7.8	108
29	Prospective constraints on the primordial black hole abundance from the stochastic gravitational-wave backgrounds produced by coalescing events and curvature perturbations. Physical Review D, 2019, 99, .	4.7	108
30	TeV Â-rays from old supernova remnants. Monthly Notices of the Royal Astronomical Society, 2006, 371, 1975-1982.	4.4	104
31	Primordial black hole abundance from random Gaussian curvature perturbations and a local density threshold. Progress of Theoretical and Experimental Physics, 2018, 2018, .	6.6	100
32	Restricting quark matter models by gravitational wave observation. Physical Review D, 2004, 69, .	4.7	99
33	More hilltop inflation models. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 004-004.	5.4	99
34	Big bang nucleosynthesis with long-lived charged massive particles. Physical Review D, 2007, 76, .	4.7	99
35	Constraints on primordial black holes from the Galactic gamma-ray background. Physical Review D, 2016, 94, .	4.7	96
36	The LiteBIRD Satellite Mission: Sub-Kelvin Instrument. Journal of Low Temperature Physics, 2018, 193, 1048-1056.	1.4	96

#	Article	IF	CITATIONS
37	Black hole formation and slow-roll inflation. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 038.	5.4	95
38	Is the PAMELA anomaly caused by supernova explosions near the Earth?. Physical Review D, 2009, 80, .	4.7	95
39	Superheavy dark matter and IceCube neutrino signals: Bounds on decaying dark matter. Physical Review D, 2015, 92, .	4.7	95
40	Primordial black holes from the inflating curvaton. Physical Review D, 2013, 87, .	4.7	94
41	PRIMORDIAL BLACK HOLE FORMATION IN THE MATTER-DOMINATED PHASE OF THE UNIVERSE. Astrophysical Journal, 2016, 833, 61.	4.5	94
42	Testing scenarios of primordial black holes being the seeds of supermassive black holes by ultracompact minihalos and CMB <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Î14</mml:mi></mml:math> distortions. Physical Review D, 2014, 90, .	4.7	91
43	Spins of primordial black holes formed in the matter-dominated phase of the Universe. Physical Review D, 2017, 96, .	4.7	89
44	Enhancement of gravitational waves induced by scalar perturbations due to a sudden transition from an early matter era to the radiation era. Physical Review D, 2019, 100, .	4.7	85
45	Testing the Seesaw Mechanism and Leptogenesis with Gravitational Waves. Physical Review Letters, 2020, 124, 041804.	7.8	84
46	Primordial nucleosynthesis and hadronic decay of a massive particle with a relatively short lifetime. Physical Review D, 2001, 64, .	4.7	78
47	Quintessence Cosmology and Varying Â. Progress of Theoretical Physics, 2002, 107, 631-636.	2.0	77
48	Observable induced gravitational waves from an early matter phase. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 033-033.	5.4	75
49	Space gravitational-wave antennas DECIGO and B-DECIGO. International Journal of Modern Physics D, 2019, 28, 1845001.	2.1	73
50	Big-bang nucleosynthesis with long-lived charged slepton. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2007, 649, 436-439.	4.1	69
51	Gravitational waves induced by scalar perturbations during a gradual transition from an early matter era to the radiation era. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 071-071.	5.4	67
52	Updated Design of the CMB Polarization Experiment Satellite LiteBIRD. Journal of Low Temperature Physics, 2020, 199, 1107-1117.	1.4	64
53	Possible solution to theLi7problem by the long lived stau. Physical Review D, 2007, 76, .	4.7	60
54	Cosmic rays from dark matter annihilation and big-bang nucleosynthesis. Physical Review D, 2009, 79, .	4.7	60

#	Article	IF	CITATIONS
55	Neutralino warm dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 505, 169-176.	4.1	59
56	Cosmological constraints on dark matter models with velocity-dependent annihilation cross section. Physical Review D, 2011, 83, .	4.7	59
57	Positron and gamma-ray signatures of dark matter annihilation and big-bang nucleosynthesis. Physical Review D, 2009, 79, .	4.7	56
58	Nonthermal Emission Associated with Strong AGN Outbursts at the Centers of Galaxy Clusters. Astrophysical Journal, 2007, 663, L61-L64.	4.5	54
59	Axion-like particles and recent observations of the cosmic infrared background radiation. Physical Review D, 2017, 96, .	4.7	54
60	Generating primordial black holes via hilltop-type inflation models. Physical Review D, 2009, 80, .	4.7	52
61	Neutrino signals from annihilating/decaying dark matter in the light of recent measurements of cosmic ray electron/positron fluxes. Physical Review D, 2009, 79, .	4.7	51
62	Can we explain AMS-02 antiproton and positron excesses simultaneously by nearby supernovae without pulsars or dark matter?. Progress of Theoretical and Experimental Physics, 2016, 2016, 021E01.	6.6	51
63	Solving the cosmic lithium problems with primordial late-decaying particles. Physical Review D, 2007, 76, .	4.7	50
64	Cosmological constraints on the gravitino LSP scenario with a sneutrino NLSP. Physical Review D, 2007, 75, .	4.7	49
65	Higgs vacuum metastability in primordial inflation, preheating, and reheating. Physical Review D, 2016, 94, .	4.7	49
66	Big Bang Nucleosynthesis and Lepton Number Asymmetry in the Universe. Astrophysical Journal, 1997, 490, 72-75.	4.5	43
67	Production and dilution of gravitinos by modulus decay. Physical Review D, 2004, 70, .	4.7	40
68	Big-bang nucleosynthesis and the relic abundance of dark matter in a stau-neutralino coannihilation scenario. Physical Review D, 2008, 78, .	4.7	40
69	DECIGO and DECIGO pathfinder. Classical and Quantum Gravity, 2010, 27, 084010.	4.0	39
70	On the generation of a non-gaussian curvature perturbation during preheating. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 023-023.	5.4	39
71	Neutralino dark matter from heavy gravitino decay. Physical Review D, 2005, 72, .	4.7	38
72	Structure of dark matter halos in warm dark matter models and in models with long-lived charged massive particles. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	5.4	37

#	Article	IF	CITATIONS
73	Primordial black hole dark matter and LIGO/Virgo merger rate from inflation with running spectral indices: formation in the matter- and/or radiation-dominated universe. Classical and Quantum Gravity, 2018, 35, 235017.	4.0	37
74	Precise measurements of primordial power spectrum with 21 cm fluctuations. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 065-065.	5.4	35
75	Constraints on the neutrino parameters by future cosmological 21 cm line and precise CMB polarization observations. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 008-008.	5.4	35
76	The inflating curvaton. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 022-022.	5.4	34
77	Revisiting big-bang nucleosynthesis constraints on dark-matter annihilation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 751, 246-250.	4.1	31
78	DECIGO: The Japanese space gravitational wave antenna. Journal of Physics: Conference Series, 2009, 154, 012040.	0.4	30
79	Effect of inhomogeneity on primordial black hole formation in the matter dominated era. Physical Review D, 2018, 98, .	4.7	29
80	Inflation, baryogenesis, and gravitino dark matter at ultralow reheat temperatures. Physical Review D, 2009, 80, .	4.7	28
81	Abundance of primordial black holes in peak theory for an arbitrary power spectrum. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	28
82	Probing the unified origin of dark matter and baryon asymmetry at PAMELA and Fermi Large Area Telescope. Physical Review D, 2009, 80, .	4.7	27
83	X-RAY OBSERVATION OF VERY HIGH ENERGY GAMMA-RAY SOURCE, HESS J1745–303, WITH <i>SUZAKU </i> . Astrophysical Journal, 2009, 691, 1854-1861.	4.5	26
84	Electroweak vacuum collapse induced by vacuum fluctuations of the Higgs field around evaporating black holes. Physical Review D, 2018, 98, .	4.7	26
85	Small field Coleman-Weinberg inflation driven by a fermion condensate. Physical Review D, 2015, 91, .	4.7	25
86	High-energy neutrinos from multibody decaying dark matter. Physical Review D, 2018, 97, .	4.7	25
87	Constraints on small-scale primordial power by annihilation signals from extragalactic dark matter minihalos. Physical Review D, 2018, 97, .	4.7	25
88	Sub-GeV galactic cosmic-ray antiprotons from primordial black holes in the Randall-Sundrum braneworld. Physical Review D, 2005, 71, .	4.7	24
89	EVOLUTION OF SYNCHROTRON X-RAYS IN SUPERNOVA REMNANTS. Astrophysical Journal, 2012, 746, 134.	4.5	24
90	Polarization tensors in strong magnetic fields. Physical Review D, 2002, 65, .	4.7	23

#	Article	IF	CITATIONS
91	Stau relic density at the big-bang nucleosynthesis era in the coannihilation scenario and a solution to theLi7problem. Physical Review D, 2010, 82, .	4.7	23
92	Determination of neutrino mass hierarchy by 21 cm line and CMB B-mode polarization observations. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 718, 1186-1193.	4.1	23
93	Big-bang nucleosynthesis with sub-GeV massive decaying particles. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 048-048.	5.4	23
94	Cosmological scenario of the stop as the next lightest supersymmetric particle with the gravitino as the lightest supersymmetric particle, and the cosmic lithium problem. Physical Review D, 2009, 79, .	4.7	22
95	A possible origin of the rapid variability of gamma-ray bursts due to convective energy transfer in hyperaccretion discs. Monthly Notices of the Royal Astronomical Society, 2012, 419, 713-717.	4.4	22
96	Cosmological constraints on neutrino injection. Physical Review D, 2007, 76, .	4.7	21
97	Cosmology with long-lived charged massive particles. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2010, 682, 337-341.	4.1	21
98	Clustering of primordial black holes formed in a matter-dominated epoch. Physical Review D, 2019, 100,	4.7	20
99	Dilaton stabilization and baryogenesis. Physical Review D, 2003, 67, .	4.7	19
100	Diffuse gamma-ray background and cosmic-ray positrons from annihilating dark matter. Physical Review D, 2009, 80, .	4.7	19
101	Concept design of the LiteBIRD satellite for CMB B-mode polarization. , 2018, , .		19
102	Gamma-ray burst neutrino background and star formation history in the universe. Astroparticle Physics, 2003, 18, 551-564.	4.3	18
103	DECIGO pathfinder. Classical and Quantum Gravity, 2009, 26, 094019.	4.0	18
104	Gamma-ray flare and absorption in the Crab nebula: lovely TeV-PeV astrophysics. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2249-2254.	4.4	18
105	Effects of electrically charged dark matter on cosmic microwave background anisotropies. Physical Review D, 2017, 95, .	4.7	18
106	Big-bang nucleosynthesis with a long-lived charged massive particle including <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mmultiscripts><mml:mi>He</mml:mi><mml:mprescripts></mml:mprescripts><mml:none /><mml:mn>4</mml:mn></mml:none </mml:mmultiscripts>spallation processes. Physical Review D,</mml:math 	4.7	17
107	2011, 84, . Scale-dependent CMB asymmetry from primordial configuration. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 026-026.	5.4	17
108	Flaxino dark matter and stau decay. Journal of High Energy Physics, 2008, 2008, 061-061.	4.7	16

#	Article	IF	CITATIONS
109	Electroweak vacuum instability and renormalized Higgs field vacuum fluctuations in the inflationary universe. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 011-011.	5.4	16
110	Characteristics and Performance of the CALorimetric Electron Telescope (CALET) Calorimeter for Gamma-Ray Observations. Astrophysical Journal, Supplement Series, 2018, 238, 5.	7.7	16
111	Cosmological constant problem and renormalized vacuum energy density in curved background. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 006-006.	5.4	16
112	Constraining the cogenesis of visible and dark matter with AMS-02 and Xenon-100. Physical Review D, 2013, 88, .	4.7	15
113	Reinterpretation of the Starobinsky model. Progress of Theoretical and Experimental Physics, 2016, 2016, 123E01.	6.6	15
114	Can decaying particle explain cosmic infrared background excess?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 772, 628-633.	4.1	15
115	Inflaton as the Affleck-Dine baryogenesis field in hilltop supernatural inflation. Physical Review D, 2020, 102, .	4.7	15
116	Microwave spectro-polarimetry of matter and radiation across space and time. Experimental Astronomy, 2021, 51, 1471-1514.	3.7	15
117	MeV-scale reheating temperature and cosmological production of light sterile neutrinos. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 015-015.	5.4	15
118	Constraints on electron-scattering interpretation of XENON1T excess. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 035-035.	5.4	15
119	X-ray spectroscopy of the mixed morphology supernova remnant W 28 with XMM-Newton. Publication of the Astronomical Society of Japan, 2014, 66, .	2.5	14
120	Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7â^'3946. Astrophysical Journal, 2017, 840, 74.	4.5	14
121	Multi-field effects in a simple extension ofR2inflation. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 044-044.	5.4	14
122	The r-Process Nucleosynthesis in Neutrino-/Magnetocentrifugally-Driven Winds. Publication of the Astronomical Society of Japan, 2001, 53, 547-554.	2.5	13
123	Right-handed sneutrino dark matter and big-bang nucleosynthesis. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2010, 689, 163-168.	4.1	13
124	Ultracompact minihalos associated with stellar-mass primordial black holes. Physical Review D, 2019, 99, .	4.7	13
125	The Current Status and Future Prospects of KAGRA, the Large-Scale Cryogenic Gravitational Wave Telescope Built in the Kamioka Underground. Galaxies, 2022, 10, 63.	3.0	13
126	Phenomenology of gravitational aether as a solution to the old cosmological constant problem. Physical Review D, 2011, 84, .	4.7	12

#	Article	IF	CITATIONS
127	The gravitino problem in supersymmetric warm inflation. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 020-020.	5.4	11
128	Hybrid curvaton. Physical Review D, 2012, 85, .	4.7	11
129	Non-Gaussianity in the inflating curvaton. Physical Review D, 2013, 87, .	4.7	11
130	Electroweak vacuum instability and renormalized vacuum field fluctuations in Friedmann-Lemaitre-Robertson-Walker background. Physical Review D, 2018, 98, .	4.7	11
131	Hilltop supernatural inflation and gravitino problem. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 010-010.	5.4	10
132	Cosmic ray anomalies and dark matter annihilation to muons via a Higgs portal hidden sector. Physical Review D, 2010, 81, .	4.7	10
133	Search for GeV Gamma-Ray Counterparts of Gravitational Wave Events by CALET. Astrophysical Journal, 2018, 863, 160.	4.5	10
134	Spins of Primordial Black Holes Formed in the Radiation-dominated Phase of the Universe: First-order Effect. Astrophysical Journal, 2021, 908, 140.	4.5	10
135	Discovery of Extended X-Ray Emission from an Unidentified TeV Source, HESS J1614\$-\$518, Using the Suzaku Satellite. Publication of the Astronomical Society of Japan, 2008, 60, S163-S172.	2.5	9
136	Ambiguity in running spectral index with an extra light field during inflation. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 019-019.	5.4	9
137	Allowed slepton intergenerational mixing in light of light element abundances. Physical Review D, 2012, 86, .	4.7	8
138	Distinguishing between extra natural inflation and natural inflation after BICEP2. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 001-001.	5.4	8
139	Cosmology with the Square Kilometre Array by SKA-Japan. Publication of the Astronomical Society of Japan, 2016, 68, R2.	2.5	8
140	Modulated decay in the multi-component Universe. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 047-047.	5.4	7
141	Constraints on long-lived electrically charged massive particles from anomalous strong lens systems. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 008-008.	5.4	7
142	Anisotropic kinetic pressure in ideal MHD and application to entropy production in neutrino-driven wind in supernovae. Astroparticle Physics, 2004, 21, 433-441.	4.3	6
143	Hilltop supernatural inflation and SUSY unified models. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 029-029.	5.4	6
144	Concept Study of Optical Configurations for High-Frequency Telescope for LiteBIRD. Journal of Low Temperature Physics, 2018, 193, 841-850.	1.4	6

#	Article	IF	CITATIONS
145	Possible Quark Star RX J1856.5-3754 and Its Mass. Progress of Theoretical Physics Supplement, 2003, 151, 181-185.	0.1	5
146	Multidimensional treatment of photon emission from accretion discs around black holes. Monthly Notices of the Royal Astronomical Society, 0, 381, 1267-1274.	4.4	5
147	Positron annihilation as a cosmic ray probe. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 421, L102-L106.	3.3	5
148	Probing lepton asymmetry with 21 cm fluctuations. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 014-014.	5.4	5
149	Elucidating dark energy with future 21 cm observations at the epoch of reionization. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 024-024.	5.4	5
150	Dependence of accessible dark matter annihilation cross sections on the density profiles of dwarf spheroidal galaxies with the Cherenkov Telescope Array. Physical Review D, 2019, 99, .	4.7	5
151	Impacts of new small-scale <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>N</mml:mi></mml:math> -body simulations on dark matter annihilations constrained from cosmological 21-cm line observations. Physical Review D, 2021, 104, .	4.7	5
152	Affleck-Dine baryogenesis with modulated reheating. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 027-027.	5.4	4
153	Delta-N formalism for curvaton with modulated decay. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 009-009.	5.4	4
154	Dynamical fine-tuning of initial conditions for small field inflation. Physical Review D, 2016, 93, .	4.7	4
155	Gravitational waves induced by scalar perturbations during a gradual transition from an early matter era to the radiation era. Journal of Physics: Conference Series, 2020, 1468, 012001.	0.4	4
156	Enhancement of gravitational waves induced by scalar perturbations due to a sudden transition from an early matter era to the radiation era. Journal of Physics: Conference Series, 2020, 1468, 012002.	0.4	4
157	Photon emission from inside the innermost stable circular orbit. Physical Review D, 2021, 103, .	4.7	4
158	Monte Carlo Study of Electron and Positron Cosmic-Ray Propagation with the CALET Spectrum. Astrophysical Journal, 2022, 926, 5.	4.5	4
159	Big-bang nucleosynthesis through bound-state effects with a long-lived slepton in the NMSSM. Physical Review D, 2014, 90, .	4.7	3
160	Gravitational Wave Physics and Astronomy in the nascent era. Progress of Theoretical and Experimental Physics, 0, , .	6.6	3
161	Long Lived Charged Massive Particles and Big Bang Nucleosynthesis. AIP Conference Proceedings, 2007,	0.4	2
162	Cosmic-ray signatures of dark matter from a flavor dependent gauge symmetry model with neutrino mass mechanism. Physical Review D, 2020, 102, .	4.7	2

0

#	Article	IF	CITATIONS
163	AFFLECK-DINE BARYOGENESIS IN A STRING MODEL. Modern Physics Letters A, 2004, 19, 1231-1234.	1.2	1
164	A solution to the [sup 7]Li problem by the long lived stau. AIP Conference Proceedings, 2008, , .	0.4	1
165	COSMOLOGICAL PROMISING PARAMETERS OF STAU IN THE MINIMAL SUPERSYMMETRIC STANDARD MODEL. International Journal of Modern Physics A, 2009, 24, 3501-3507.	1.5	1
166	Possible solution to the [sup 7]Li problem by the long lived stau. , 2009, , .		1
167	Production cross sections of -rays, electrons, and positrons in p–p collisions. Astroparticle Physics, 2014, 55, 8-16.	4.3	1
168	What we can learn from the spectral index of the tensor mode. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 755, 70-75.	4.1	1
169	Big–bang nucleosynthesis with a long–lived CHAMP including He4 spallation process. Journal of Physics: Conference Series, 2014, 485, 012020.	0.4	1
170	Primordial nucleosynthesis and hadronic decay of supersymmetric particles in the early universe. Nuclear Physics A, 2003, 718, 377-379.	1.5	0
171	On the Origin of Galactic TeV Unidentified Sources. Progress of Theoretical Physics Supplement, 2007, 169, 166-169.	0.1	0
172	X-ray follow-ups of TeV unID sources using Suzaku—HESS J1745—303—. , 2008, , .		0
173	Constraint on slepton intergenerational mixing from big-bang nucleosynthesis. , 2012, , .		0
174	Big-bang nucleosynthesis with a long-lived charged massive particle including 4He spallation processes in a bound state. , 2012, , .		0
175	130 GeV gamma-ray line through axion conversion. Physical Review D, 2015, 91, .	4.7	0
176	Slow-roll corrections in multi-field inflation: a separate universes approach. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 021-021.	5.4	0
177	HADRONIC DECAY OF SUSY PARTICLE AND DESTRUCTION OF LIGHT ELEMENTS. , 2004, , .		0
178	HADRONIC DECAY OF THE GRAVITINO IN THE EARLY UNIVERSE AND ITS IMPLICATIONS TO INFLATION. , 2005, , .		0
179	USING GRAVITATIONAL-WAVE OBSERVATIONS TO CONSTRAIN THE PARAMETERS OF BAG MODEL. , 2006, , .		Ο
_			

180 TEV GAMMA-RAYS FROM OLD SUPERNOVA REMNANTS. , 2007, , .

#	Article	IF	CITATIONS
181	Detecting the Earth-Skimming Tau Neutrinos. Journal of the Physical Society of Japan, 2008, 77, 101-102.	1.6	0
182	DECIGO: THE JAPANESE SPACE GRAVITATIONAL WAVE ANTENNA. , 2008, , .		0
183	Annihilation signals from dark matter minihalos as a probe of primordial power on small scales revisited. , 2017, , .		0