Xueying Guan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/898331/publications.pdf

Version: 2024-02-01

430874 552781 3,661 29 18 26 citations g-index h-index papers 30 30 30 2552 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33, 531-537.	17.5	1,560
2	Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics, 2019, 51, 739-748.	21.4	568
3	Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature Genetics, 2017, 49, 1089-1098.	21.4	384
4	miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nature Communications, 2014, 5, 3050.	12.8	215
5	Genetic basis for glandular trichome formation in cotton. Nature Communications, 2016, 7, 10456.	12.8	130
6	Small interfering <scp>RNA</scp> s from bidirectional transcripts of <i>Gh<scp>MML</scp>3_A12</i> regulate cotton fiber development. New Phytologist, 2016, 210, 1298-1310.	7.3	124
7	Genetics and evolution of <scp>MIXTA</scp> genes regulating cotton lint fiber development. New Phytologist, 2018, 217, 883-895.	7.3	112
8	Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genomics, 2015, 16, 477.	2.8	72
9	Polyploidy and small RNA regulation of cotton fiber development. Trends in Plant Science, 2014, 19, 516-528.	8.8	68
10	Suppressing a Putative Sterol Carrier Gene Reduces Plasmodesmal Permeability and Activates Sucrose Transporter Genes during Cotton Fiber Elongation. Plant Cell, 2017, 29, 2027-2046.	6.6	66
11	LncRNAs in polyploid cotton interspecific hybrids are derived from transposon neofunctionalization. Genome Biology, 2018, 19, 195.	8.8	59
12	Dynamic Roles for Small RNAs and DNA Methylation during Ovule and Fiber Development in Allotetraploid Cotton. PLoS Genetics, 2015, 11, e1005724.	3.5	57
13	Characterization of conserved circular <scp>RNA</scp> in polyploid <i>Gossypium</i> species and their ancestors. FEBS Letters, 2017, 591, 3660-3669.	2.8	51
14	Efficient chromatin profiling of H3K4me3 modification in cotton using CUT&Tag. Plant Methods, 2020, 16, 120.	4.3	31
15	Neofunctionalization of a polyploidization-activated cotton long intergenic non-coding RNA <i>DAN1</i> during drought stress regulation. Plant Physiology, 2021, 186, 2152-2168.	4.8	27
16	Divergent improvement of two cultivated allotetraploid cotton species. Plant Biotechnology Journal, 2021, 19, 1325-1336.	8.3	26
17	The transcription factor MML4_D12 regulates fiber development through interplay with the WD40-repeat protein WDR in cotton. Journal of Experimental Botany, 2020, 71, 3499-3511.	4.8	24
18	Pseudomonas species isolated via high-throughput screening significantly protect cotton plants against verticillium wilt. AMB Express, 2020, 10, 193.	3.0	24

#	Article	IF	Citations
19	The lincRNA XH123 is involved in cotton cold-stress regulation. Plant Molecular Biology, 2021, 106, 521-531.	3.9	20
20	A Longâ€Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery. Plant Genome, 2015, 8, eplantgenome2014.10.0068.	2.8	12
21	Functional analysis of the cotton CLE polypeptide signaling gene family in plant growth and development. Scientific Reports, 2021, 11, 5060.	3.3	7
22	Divergence and evolution of cotton bHLH proteins from diploid to allotetraploid. BMC Genomics, 2018, 19, 162.	2.8	5
23	Role of phasiRNAs from two distinct phasing frames of GhMYB2 loci in cis- gene regulation in the cotton genome. BMC Plant Biology, 2020, 20, 219.	3.6	5
24	Subgenome Bias and Temporal Postponement of Gene Expression Contributes to the Distinctions of Fiber Quality in Gossypium Species. Frontiers in Plant Science, 2021, 12, 819679.	3.6	5
25	Absence of CG methylation alters the long noncoding transcriptome landscape in multiple species. FEBS Letters, 2021, 595, 1734-1747.	2.8	4
26	Functional examination of IncRNAs in allotetraploid Gossypium hirsutum. BMC Genomics, 2021, 22, 443.	2.8	4
27	Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. , 0, .		1
28	Profiling of H3K4me3 Modification in Plants using Cleavage under Targets and Tagmentation. Journal of Visualized Experiments, 2022, , .	0.3	0
29	Retrieving a disrupted gene encoding phospholipase A for fibre enhancement in allotetraploid cultivated cotton. Plant Biotechnology Journal, 2022, 20, 1770-1785.	8.3	O