Hyun-Woo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8983035/publications.pdf

Version: 2024-02-01

257450 233421 2,113 64 24 45 citations g-index h-index papers 65 65 65 2672 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Zero Discharge of Dyes and Regeneration of a Washing Solution in Membrane-Based Dye Removal by Cold Plasma Treatment. Membranes, 2022, 12, 546.	3.0	5
2	Integration of submerged microfiltration and cold plasma for high-strength livestock excreta. Journal of Hazardous Materials, 2021, 401, 123280.	12.4	3
3	Prediction of varying microcystins during non-thermal plasma oxidation of harvested microalgal biomass. Journal of Hazardous Materials, 2021, 403, 123596.	12.4	10
4	Coupling cold plasma and membrane photobioreactor for enhanced fouling control during livestock excreta treatment. Chemosphere, 2021, 265, 129031.	8.2	4
5	Iron-impregnated spent coffee ground biochar for enhanced degradation of methylene blue during cold plasma application. Journal of Industrial and Engineering Chemistry, 2021, 98, 383-388.	5.8	10
6	External electric field promotes ammonia stripping from wastewater. Water Research, 2021, 203, 117518.	11.3	14
7	Techno-economic analysis of livestock urine and manure as a microalgal growth medium. Waste Management, 2021, 135, 276-286.	7.4	5
8	Energy-effective elimination of harmful microcystins by a non-thermal plasma process. Chemosphere, 2021, 284, 131338.	8.2	10
9	Statistical correlation of ecotoxicity and water quality parameters in slaughterhouse wastewater. Environmental Geochemistry and Health, 2020, 42, 1671-1680.	3.4	1
10	Sulfonamide degradation and metabolite characterization in submerged membrane photobioreactors for livestock excreta treatment. Chemosphere, 2020, 261, 127604.	8.2	13
11	Optimized Pretreatment of Non-Thermal Plasma for Advanced Sewage Oxidation. International Journal of Environmental Research and Public Health, 2020, 17, 7694.	2.6	5
12	Carbon Source Competition in Biological Selenate Reduction under Other Oxyanions Contamination. Processes, 2020, 8, 1645.	2.8	1
13	Effect of Nitrate and Perchlorate on Selenate Reduction in a Sequencing Batch Reactor. Processes, 2020, 8, 344.	2.8	6
14	Cold Plasma Treatment for Efficient Control over Algal Bloom Products in Surface Water. Water (Switzerland), 2019, 11, 1513.	2.7	20
15	Techno-economic assessment of conventional and direct-transesterification processes for microalgal biomass to biodiesel conversion. Bioresource Technology, 2019, 294, 122173.	9.6	25
16	Biodiesel Production from Waste Cooking Grease: Optimization and Comparative Productivity Assessment. KSCE Journal of Civil Engineering, 2019, 23, 1000-1006.	1.9	4
17	Decomposition of volatile fatty acids using electron beam irradiation. Chemical Engineering Journal, 2019, 360, 494-500.	12.7	13
18	Semi-continuous operation and fouling characteristics of submerged membrane photobioreactor (SMPBR) for tertiary treatment of livestock wastewater. Journal of Cleaner Production, 2018, 180, 244-251.	9.3	28

#	Article	IF	Citations
19	Convergence of direct-transesterification and anaerobic digestion forÂimproved bioenergy potentials of microalgae. Journal of Cleaner Production, 2018, 178, 749-756.	9.3	9
20	Photoautotrophic cultivation of mixed microalgae consortia using various organic waste streams towards remediation and resource recovery. Bioresource Technology, 2018, 247, 576-581.	9.6	32
21	Pathogen Deactivation of Glow Discharge Cold Plasma While Treating Organic and Inorganic Pollutants of Slaughterhouse Wastewater. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	18
22	Degradation of sulfonamide antibiotics and their intermediates toxicity in an aeration-assisted non-thermal plasma while treating strong wastewater. Chemosphere, 2018, 209, 901-907.	8.2	48
23	Bio-hythane production from microalgae biomass: Key challenges and potential opportunities for algal bio-refineries. Bioresource Technology, 2017, 241, 525-536.	9.6	91
24	Producing desulfurized biogas through removal of sulfate in the firstâ€stage of a twoâ€stage anaerobic digestion. Biotechnology and Bioengineering, 2017, 114, 970-979.	3.3	25
25	Enhanced Microalgal Growth and Effluent Quality in Tertiary Treatment of Livestock Wastewater Using a Sequencing Batch Reactor. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	12
26	Assessment of organic removal in series- and parallel-connected microbial fuel cell stacks. Biotechnology and Bioprocess Engineering, 2017, 22, 739-747.	2.6	17
27	Biodiesel potential of rendered fat from avian influenza infected poultry in a burial site. Korean Journal of Chemical Engineering, 2017, 34, 2806-2810.	2.7	3
28	Photoautotrophic Microalgae Screening for Tertiary Treatment of Livestock Wastewater and Bioresource Recovery. Water (Switzerland), 2017, 9, 192.	2.7	13
29	Optimal Temperature and Light Intensity for Improved Mixotrophic Metabolism of Chlorella sorokiniana Treating Livestock Wastewater. Journal of Microbiology and Biotechnology, 2017, 27, 2010-2018.	2.1	7
30	Mitigation of ammonia inhibition by internal dilution in highâ€rate anaerobic digestion of food waste leachate and evidences of microbial community response. Biotechnology and Bioengineering, 2016, 113, 1892-1901.	3.3	23
31	Direct membrane-carbonation photobioreactor producing photoautotrophic biomass via carbon dioxide transfer and nutrient removal. Bioresource Technology, 2016, 204, 32-37.	9.6	18
32	Oxalate-based remediation of arsenic bound to amorphous Fe and Al hydrous oxides in soil. Geoderma, 2016, 270, 76-82.	5.1	53
33	Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode. Environmental Science and Pollution Research, 2016, 23, 7155-7161.	5.3	7
34	Microbial behavior and characteristics of biomass during starvation and their influence on ultrafiltration of activated sludge. Desalination and Water Treatment, 2016, 57, 7487-7494.	1.0	1
35	Inhibition of residual n-hexane in anaerobic digestion of lipid-extracted microalgal wastes and microbial community shift. Environmental Science and Pollution Research, 2016, 23, 7138-7145.	5.3	15
36	Elucidating a synergistic effect of food waste addition on the enhanced anaerobic digestion of waste activated sludge. Korean Journal of Chemical Engineering, 2015, 32, 1542-1546.	2.7	16

#	Article	IF	Citations
37	Multi-component kinetics for the growth of the cyanobacterium Synechocystis sp. PCC6803. Environmental Engineering Research, 2015, 20, 347-355.	2.5	22
38	Prediction of bio-methane potential and two-stage anaerobic digestion of starfish. Bioresource Technology, 2013, 141, 184-190.	9.6	21
39	Responses of Synechocystis sp. PCC 6803 to total dissolved solids in long-term continuous operation of a photobioreactor. Bioresource Technology, 2013, 128, 378-384.	9.6	16
40	Solid-phase extraction of long-chain fatty acids from aqueous solution. Separation and Purification Technology, 2013, 106, 1-7.	7.9	6
41	Optimal Metal Dose of Alternative Cathode Catalyst Considering Organic Substances in Single Chamber Microbial Fuel Cells. Environmental Engineering Research, 2013, 18, 145-150.	2.5	12
42	Hydrolytic activities of extracellular enzymes in thermophilic and mesophilic anaerobic sequencing-batch reactors treating organic fractions of municipal solid wastes. Bioresource Technology, 2012, 110, 130-134.	9.6	61
43	Advanced Control for Photoautotrophic Growth and CO ₂ -Utilization Efficiency Using a Membrane Carbonation Photobioreactor (MCPBR). Environmental Science & Environmental Science & Control of the Science & Control	10.0	57
44	Optimization of combined (acidÂ+Âthermal) pretreatment for fermentative hydrogen production from Laminaria japonica using response surface methodology (RSM). International Journal of Hydrogen Energy, 2011, 36, 9626-9631.	7.1	99
45	Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance. Bioresource Technology, 2011, 102, 8501-8506.	9.6	101
46	Effects of temperature shifts on growth rate and lipid characteristics of Synechocystis sp. PCC6803 in a bench-top photobioreactor. Bioresource Technology, 2011, 102, 11218-11225.	9.6	63
47	A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system. Bioresource Technology, 2011, 102, 7272-7279.	9.6	99
48	Nutrient acquisition and limitation for the photoautotrophic growth of <i>Synechocystis</i> pcc6803 as a renewable biomass source. Biotechnology and Bioengineering, 2011, 108, 277-285.	3.3	44
49	Ammonia inhibition and microbial adaptation in continuous single-chamber microbial fuel cells. Journal of Power Sources, 2011, 196, 6210-6213.	7.8	59
50	Photoautotrophic nutrient utilization and limitation during semi ontinuous growth of <i>Synechocystis</i> sp. PCC6803. Biotechnology and Bioengineering, 2010, 106, 553-563.	3.3	61
51	Ammonia inhibition of electricity generation in single-chambered microbial fuel cells. Journal of Power Sources, 2010, 195, 6428-6433.	7.8	96
52	Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells. Biosensors and Bioelectronics, 2010, 25, 1155-1159.	10.1	128
53	Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell. Bioresource Technology, 2010, 101, S33-S37.	9.6	142
54	Enhancement of bioenergy production and effluent quality by integrating optimized acidification with submerged anaerobic membrane bioreactor. Bioresource Technology, 2010, 101, S7-S12.	9.6	40

#	Article	IF	CITATIONS
55	Effects of the hydraulic retention time on the fouling characteristics of an anaerobic membrane bioreactor for treating acidifi ed wastewater. Desalination and Water Treatment, 2010, 18, 251-256.	1.0	22
56	Electricity Generation from MFCs Using Differently Grown Anode-Attached Bacteria. Environmental Engineering Research, 2010, 15, 71-78.	2.5	10
57	Effect of granular porous media on the composting of swine manure. Waste Management, 2008, 28, 2336-2343.	7.4	12
58	Response Surface Optimization of Substrates for Thermophilic Anaerobic Codigestion of Sewage Sludge and Food Waste. Journal of the Air and Waste Management Association, 2007, 57, 309-318.	1.9	40
59	Simultaneous treatment of sewage sludge and food waste by the unified high-rate anaerobic digestion system. Water Science and Technology, 2006, 53, 29-35.	2.5	28
60	Pilot-scale two-stage process: a combination of acidogenic hydrogenesis and methanogenesis. Water Science and Technology, 2005, 52, 131-138.	2.5	50
61	Anaerobic co-digestion of sewage sludge and food waste using temperature-phased anaerobic digestion process. Water Science and Technology, 2004, 50, 107-114.	2.5	69
62	Feasibility study of the IE-SASW method for nondestructive evaluation of containment building structures in nuclear power plants. Nuclear Engineering and Design, 2003, 219, 97-110.	1.7	7
63	The optimisation of food waste addition as a co-substrate in anaerobic digestion of sewage sludge. Waste Management and Research, 2003, 21, 515-526.	3.9	148
64	Parametric study on the impact-echo method using mock-up shafts. NDT and E International, 2002, 35, 595-608.	3.7	15