Michael Boots

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8982776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antigenic escape selects for the evolution of higher pathogen transmission and virulence. Nature Ecology and Evolution, 2022, 6, 51-62.	7.8	22
2	Bats host the most virulent—but not the most dangerous—zoonotic viruses. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113628119.	7.1	22
3	Multimorph Eco-Evolutionary Dynamics in Structured Populations. American Naturalist, 2022, 200, 345-372.	2.1	4
4	Persistent effects of management history on honeybee colony virus abundances. Journal of Invertebrate Pathology, 2021, 179, 107520.	3.2	9
5	Experimental evidence that local interactions select against selfish behaviour. Ecology Letters, 2021, 24, 1187-1192.	6.4	2
6	Boosting can explain patterns of fluctuations of ratios of inapparent to symptomatic dengue virus infections. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	7.1	8
7	The central role of host reproduction in determining the evolution of virulence in spatially structured populations. Journal of Theoretical Biology, 2021, 523, 110717.	1.7	2
8	The three Ts of virulence evolution during zoonotic emergence. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210900.	2.6	18
9	Optimizing COVID-19 control with asymptomatic surveillance testing in a university environment. Epidemics, 2021, 37, 100527.	3.0	21
10	Contrasting impacts of a novel specialist vector on multihost viral pathogen epidemiology in wild and managed bees. Molecular Ecology, 2020, 29, 380-393.	3.9	20
11	The problem of mediocre generalists: population genetics and eco-evolutionary perspectives on host breadth evolution in pathogens. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201230.	2.6	17
12	Ecological processes underlying the emergence of novel enzootic cycles: Arboviruses in the neotropics as a case study. PLoS Neglected Tropical Diseases, 2020, 14, e0008338.	3.0	19
13	Resource quality determines the evolution of resistance and its genetic basis. Molecular Ecology, 2020, 29, 4128-4142.	3.9	8
14	The target of selection matters: An established resistance—developmentâ€ŧime negative genetic tradeâ€off is not found when selecting on development time. Journal of Evolutionary Biology, 2020, 33, 1109-1119.	1.7	8
15	The Role of Vector Trait Variation in Vector-Borne Disease Dynamics. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	57
16	A mathematical model shows macrophages delay Staphylococcus aureus replication, but limitations in microbicidal capacity restrict bacterial clearance. Journal of Theoretical Biology, 2020, 497, 110256.	1.7	4
17	Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. ELife, 2020, 9, .	6.0	91
18	Host phylogenetic distance drives trends in virus virulence and transmissibility across the animal–human interface. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190296.	4.0	64

#	Article	IF	CITATIONS
19	Industrial bees: The impact of apicultural intensification on local disease prevalence. Journal of Applied Ecology, 2019, 56, 2195-2205.	4.0	20
20	Integrating social behaviour, demography and disease dynamics in network models: applications to disease management in declining wildlife populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180211.	4.0	64
21	Knockâ€on community impacts of a novel vector: spillover of emerging DWVâ€B from <i>Varroa</i> â€infested honeybees to wild bumblebees. Ecology Letters, 2019, 22, 1306-1315.	6.4	68
22	Understanding the role of eco-evolutionary feedbacks in host-parasite coevolution. Journal of Theoretical Biology, 2019, 464, 115-125.	1.7	40
23	Impact of piglet oral vaccination against tuberculosis in endemic free-ranging wild boar populations. Preventive Veterinary Medicine, 2018, 155, 11-20.	1.9	43
24	Contact networks structured by sex underpin sexâ€specific epidemiology of infection. Ecology Letters, 2018, 21, 309-318.	6.4	33
25	Consensus and conflict among ecological forecasts of Zika virus outbreaks in the United States. Scientific Reports, 2018, 8, 4921.	3.3	50
26	Social structure contains epidemics and regulates individual roles in disease transmission in a groupâ€living mammal. Ecology and Evolution, 2018, 8, 12044-12055.	1.9	30
27	A genotypic tradeâ€off between constitutive resistance to viral infection and host growth rate. Evolution; International Journal of Organic Evolution, 2018, 72, 2749-2757.	2.3	28
28	Identifying regions of risk to honey bees from Zika vector control in the USA. Journal of Apicultural Research, 2018, 57, 709-719.	1.5	3
29	The evolution of constitutive and induced defences to infectious disease. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180658.	2.6	35
30	Quantifying direct and indirect contacts for the potential transmission of infection between species using a multilayer contact network. Behaviour, 2018, 155, 731-757.	0.8	26
31	Multiâ€mode fluctuating selection in host–parasite coevolution. Ecology Letters, 2017, 20, 357-365.	6.4	42
32	The application of statistical network models in disease research. Methods in Ecology and Evolution, 2017, 8, 1026-1041.	5.2	80
33	Condition-dependent virulence of slow bee paralysis virus in Bombus terrestris: are the impacts of honeybee viruses in wild pollinators underestimated?. Oecologia, 2017, 184, 305-315.	2.0	34
34	The impact of resource quality on the evolution of virulence in spatially heterogeneous environments. Journal of Theoretical Biology, 2017, 416, 1-7.	1.7	6
35	Host–parasite fluctuating selection in the absence of specificity. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171615.	2.6	25
36	Seasonal variation in daily patterns of social contacts in the European badger <i>Meles meles</i> . Ecology and Evolution, 2017, 7, 9006-9015.	1.9	21

#	Article	IF	CITATIONS
37	Using Social Network Measures in Wildlife Disease Ecology, Epidemiology, and Management. BioScience, 2017, 67, 245-257.	4.9	107
38	Ecological and evolutionary approaches to managing honeybee disease. Nature Ecology and Evolution, 2017, 1, 1250-1262.	7.8	73
39	The role of host phenology in determining the incidence of an insect sexually transmitted infection. Oikos, 2016, 125, 636-643.	2.7	6
40	The diversity-generating benefits of a prokaryotic adaptive immune system. Nature, 2016, 532, 385-388.	27.8	236
41	How Important is Vertical Transmission of Dengue Viruses by Mosquitoes (Diptera: Culicidae)?. Journal of Medical Entomology, 2016, 53, 1-19.	1.8	73
42	The Need for Evolutionarily Rational Disease Interventions: Vaccination Can Select for Higher Virulence. PLoS Biology, 2015, 13, e1002236.	5.6	12
43	REVIEW: Emerging viral disease risk to pollinating insects: ecological, evolutionary and anthropogenic factors. Journal of Applied Ecology, 2015, 52, 331-340.	4.0	132
44	Parasite Exposure Drives Selective Evolution of Constitutive versus Inducible Defense. Current Biology, 2015, 25, 1043-1049.	3.9	244
45	Coevolution of parasite virulence and host mating strategies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13290-13295.	7.1	48
46	Novel insights into the insect trancriptome response to a natural DNA virus. BMC Genomics, 2015, 16, 310.	2.8	25
47	Higher resources decrease fluctuating selection during host–parasite coevolution. Ecology Letters, 2014, 17, 1380-1388.	6.4	55
48	HOW SPECIFICITY AND EPIDEMIOLOGY DRIVE THE COEVOLUTION OF STATIC TRAIT DIVERSITY IN HOSTS AND PARASITES. Evolution; International Journal of Organic Evolution, 2014, 68, 1594-1606.	2.3	48
49	Generalism and the evolution of parasite virulence. Trends in Ecology and Evolution, 2013, 28, 592-596.	8.7	123
50	THE ORIGIN OF SPECIFICITY BY MEANS OF NATURAL SELECTION: EVOLVED AND NONHOST RESISTANCE IN HOST-PATHOGEN INTERACTIONS. Evolution; International Journal of Organic Evolution, 2013, 67, 1-9.	2.3	114
51	The evolutionary dynamics of within-generation immune priming in invertebrate hosts. Journal of the Royal Society Interface, 2013, 10, 20120887.	3.4	40
52	Optimal immune defence in the light of variation in lifespan. Parasite Immunology, 2013, 35, 331-338.	1.5	29
53	Maternal effects in disease resistance: poor maternal environment increases offspring resistance to an insect virus. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4009-4014.	2.6	49
54	The epidemiological consequences of immune priming. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4505-4512.	2.6	56

#	Article	IF	CITATIONS
55	The importance of who infects whom: the evolution of diversity in host resistance to infectious disease. Ecology Letters, 2012, 15, 1104-1111.	6.4	20
56	Invading with biological weapons: the importance of diseaseâ€mediated invasions. Functional Ecology, 2012, 26, 1249-1261.	3.6	142
57	Local transmission processes and disease-driven host extinctions. Theoretical Ecology, 2012, 5, 211-217.	1.0	18
58	The Evolution of Resistance to a Parasite Is Determined by Resources. American Naturalist, 2011, 178, 214-220.	2.1	72
59	How can immunopathology shape the evolution of parasite virulence?. Trends in Parasitology, 2011, 27, 300-305.	3.3	16
60	Host resistance and coevolution in spatially structured populations. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2216-2222.	2.6	56
61	Within and transgenerational immune priming in an insect to a DNA virus. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 871-876.	2.6	131
62	RESISTANCE IS FUTILE BUT TOLERANCE CAN EXPLAIN WHY PARASITES DO NOT ALWAYS CASTRATE THEIR HOSTS. Evolution; International Journal of Organic Evolution, 2010, 64, 348-357.	2.3	53
63	Are parasites â€~â€~prudent'' in space?. Ecology Letters, 2010, 13, 1245-1255.	6.4	80
64	Cannibals in Space: The Coevolution of Cannibalism and Dispersal in Spatially Structured Populations. American Naturalist, 2010, 175, 513-524.	2.1	46
65	How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model. Epidemics, 2010, 2, 1-10.	3.0	123
66	The Implications of Coevolutionary Dynamics to Hostâ€Parasite Interactions. American Naturalist, 2009, 173, 779-791.	2.1	92
67	The role of ecological feedbacks in the evolution of host defence: what does theory tell us?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 27-36.	4.0	187
68	The influence of trade-off shape on evolutionary behaviour in classical ecological scenarios. Journal of Theoretical Biology, 2008, 250, 498-511.	1.7	60
69	Two arms are better than one: parasite variation leads to combined inducible and constitutive innate immune responses. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 937-945.	2.6	51
70	Local Interactions Select for Lower Pathogen Infectivity. Science, 2007, 315, 1284-1286.	12.6	190
71	HOST LIFE SPAN AND THE EVOLUTION OF RESISTANCE CHARACTERISTICS. Evolution; International Journal of Organic Evolution, 2007, 61, 2-14.	2.3	121
72	THE EVOLUTION OF PARASITES IN RESPONSE TO TOLERANCE IN THEIR HOSTS: THE GOOD, THE BAD, AND APPARENT COMMENSALISM. Evolution; International Journal of Organic Evolution, 2006, 60, 945-956.	2.3	169

#	Article	IF	CITATIONS
73	The evolution of parasites in response to tolerance in their hosts: the good, the bad, and apparent commensalism. Evolution; International Journal of Organic Evolution, 2006, 60, 945-56.	2.3	64
74	The geometric theory of adaptive evolution: trade-off and invasion plots. Journal of Theoretical Biology, 2005, 233, 363-377.	1.7	68
75	Parasite evolution and extinctions. Ecology Letters, 2003, 6, 176-182.	6.4	44
76	A general host?pathogen model with free?living infective stages and differing rates of uptake of the infective stages by infected and susceptible hosts. Population Ecology, 1999, 41, 189-194.	1.2	9
77	Three Mechanisms of Host Resistance to Microparasites—Avoidance, Recovery and Tolerance—Show Different Evolutionary Dynamics. Journal of Theoretical Biology, 1999, 201, 13-23.	1.7	141
78	The Evolution of Costly Resistance in Hostâ€Parasite Systems. American Naturalist, 1999, 153, 359-370.	2.1	180
79	Cannibalism and the stage-dependent transmission of a viral pathogen of the Indian meal moth, Plodia interpunctella. Ecological Entomology, 1998, 23, 118-122.	2.2	50
80	Strain differences in the indian meal moth,Plodia interpunctella, in response to a granulosis virus. Researches on Population Ecology, 1995, 37, 37-42.	0.9	8
81	Resource limitation and the lethal and sublethal effects of a viral pathogen in the Indian meal moth,	2.2	36