List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8981910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of Hydrolyzable Tannins (Gallotannins and Ellagitannins) after Reaction with Potassium Iodate. Journal of Agricultural and Food Chemistry, 2002, 50, 1785-1790.	5.2	256
2	Self-Medication in Animals. Science, 2013, 340, 150-151.	12.6	217
3	Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agricultural and Forest Entomology, 2001, 3, 77-84.	1.3	197
4	WHAT GOES UP MUST COME DOWN? NUTRIENT ADDITION AND PREDATION PRESSURE ON OAK HERBIVORES. Ecology, 2000, 81, 1588-1600.	3.2	178
5	Landscape structure, habitat fragmentation, and the ecology of insects. Agricultural and Forest Entomology, 2002, 4, 159-166.	1.3	171
6	A variable insect–plant interaction: the relationship between tree budburst phenology and population levels of insect herbivores among trees. Ecological Entomology, 1992, 17, 91-95.	2.2	166
7	HOST-PLANT QUALITY INFLUENCES DIAPAUSE AND VOLTINISM IN A POLYPHAGOUS INSECT HERBIVORE. Ecology, 1997, 78, 977-986.	3.2	159
8	INSECT CANOPY HERBIVORY AND FRASS DEPOSITION AFFECT SOIL NUTRIENT DYNAMICS AND EXPORT IN OAK MESOCOSMS. Ecology, 2004, 85, 3335-3347.	3.2	154
9	Out of sight, out of mind: the impacts of root-feeding insects in natural and managed systems. Agricultural and Forest Entomology, 2001, 3, 3-9.	1.3	153
10	PHENOTYPIC DIVERSITY INFLUENCES ECOSYSTEM FUNCTIONING IN AN OAK SANDHILLS COMMUNITY. Ecology, 2002, 83, 2084-2090.	3.2	139
11	Special Feature: The Relative Contributions to Top-Down and Bottom-Up Forces in Population and Community Ecology. Ecology, 1992, 73, 723-723.	3.2	135
12	Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Agricultural and Forest Entomology, 2001, 3, 153-159.	1.3	134
13	Induced plant defenses breached? Phytochemical induction protects an herbivore from disease. Oecologia, 1993, 94, 195-203.	2.0	133
14	Consequences of nonâ€random species loss for decomposition dynamics: experimental evidence for additive and nonâ€additive effects. Journal of Ecology, 2008, 96, 303-313.	4.0	127
15	NONADDITIVE EFFECTS OF LEAF LITTER SPECIES DIVERSITY ON BREAKDOWN DYNAMICS IN A DETRITUS-BASED STREAM. Ecology, 2007, 88, 1167-1176.	3.2	124
16	Differential susceptibility to variable plant phenology and its role in competition between two insect herbivores on oak. Ecological Entomology, 1990, 15, 401-408.	2.2	117
17	Rickettsia associated with male-killing in a buprestid beetle. Heredity, 2001, 86, 497-505.	2.6	116
18	Evidence for transâ€generational medication in nature. Ecology Letters, 2010, 13, 1485-1493.	6.4	113

#	Article	IF	CITATIONS
19	Effects of plant quality on the population ecology of parasitoids. Agricultural and Forest Entomology, 2003, 5, 1-8.	1.3	109
20	Host plant species affects virulence in monarch butterfly parasites. Journal of Animal Ecology, 2008, 77, 120-126.	2.8	109
21	FOOD PLANT DERIVED DISEASE TOLERANCE AND RESISTANCE IN A NATURAL BUTTERFLY-PLANT-PARASITE INTERACTIONS. Evolution; International Journal of Organic Evolution, 2012, 66, 3367-3376.	2.3	109
22	Green algal extracellular products regulate antialgal toxin production in a cyanobacterium. Environmental Microbiology, 2000, 2, 291-297.	3.8	100
23	Herbivoreâ€induced shifts in carbon and nitrogen allocation in red oak seedlings. New Phytologist, 2008, 178, 835-845.	7.3	100
24	Opposing effects of spring defoliation on late season oak caterpillars. Ecological Entomology, 1987, 12, 373-382.	2.2	97
25	Fertilization Mitigates Chemical Induction and Herbivore Responses Within Damaged Oak Trees. Ecology, 1995, 76, 1226-1232.	3.2	95
26	Recycling of nitrogen in herbivore feces: plant recovery, herbivore assimilation, soil retention, and leaching losses. Oecologia, 2007, 151, 42-53.	2.0	90
27	Cycles in insect populations: delayed density dependence or exogenous driving variables?. Ecological Entomology, 1998, 23, 216-222.	2.2	88
28	Relative effects of macroinvertebrates and habitat on the chemistry of litter during decomposition. Pedobiologia, 2003, 47, 101-115.	1.2	88
29	HURRICANE DAMAGE INFLUENCES FOLIAR POLYPHENOLICS AND SUBSEQUENT HERBIVORY ON SURVIVING TREES. Ecology, 1999, 80, 2676-2682.	3.2	84
30	The Phytochemical Landscape. , 2016, , .		83
31	Plant defence theory reâ€examined: nonlinear expectations based on the costs and benefits of resource mutualisms. Journal of Ecology, 2011, 99, 66-76.	4.0	80
32	Multiple approaches to estimating the relative importanceof top-down and bottom-up forces on insect populations:Experiments, life tables, and time-series analysis. Basic and Applied Ecology, 2001, 2, 295-309.	2.7	79
33	Phenotypic variation in oak litter influences short- and long-term nutrient cycling through litter chemistry. Soil Biology and Biochemistry, 2005, 37, 319-327.	8.8	79
34	Interactions within Herbivore Communities Mediated by the Host Plant: The Keystone Herbivore Concept. , 1992, , 287-325.		77
35	Arbuscular mycorrhizal fungi affect plant tolerance andÂchemical defences to herbivory through different mechanisms. Journal of Ecology, 2016, 104, 561-571.	4.0	75
36	More is not necessarily better: the impact of limiting and excessive nutrients on herbivore population growth rates. Ecological Entomology, 2009, 34, 535-543.	2.2	73

#	Article	IF	CITATIONS
37	Elevated CO 2 lowers relative and absolute herbivore density across all species of a scrub-oak forest. Oecologia, 2003, 134, 82-87.	2.0	72
38	Cynipid gall-wasp communities correlate with oak chemistry. Journal of Chemical Ecology, 2003, 29, 209-223.	1.8	68
39	Mycorrhizal fungi as mediators of defence against insect pests in agricultural systems. Agricultural and Forest Entomology, 2009, 11, 351-358.	1.3	64
40	Intraspecific litter diversity and nitrogen deposition affect nutrient dynamics and soil respiration. Oecologia, 2003, 136, 124-128.	2.0	63
41	POPULATION DYNAMICS OF MOTTLED SCULPIN (PISCES) IN A VARIABLE ENVIRONMENT: INFORMATION THEORETIC APPROACHES. Ecological Monographs, 2006, 76, 217-234.	5.4	63
42	Leaf phenolic inhibition of gypsy moth nuclear polyhedrosis virus Role of polyhedral inclusion body aggregation. Journal of Chemical Ecology, 1990, 16, 1445-1457.	1.8	60
43	Behavioural resistance against a protozoan parasite in the monarch butterfly. Journal of Animal Ecology, 2012, 81, 70-79.	2.8	59
44	Insect herbivores and their frass affect <i>Quercus rubra</i> leaf quality and initial stages of subsequent litter decomposition. Oikos, 2008, 117, 13-22.	2.7	58
45	Designing for conservation of insects in the built environment. Insect Conservation and Diversity, 2008, 1, 189-196.	3.0	57
46	Phenotypic diversity and litter chemistry affect nutrient dynamics during litter decomposition in a two species mix. Oikos, 2004, 105, 125-131.	2.7	56
47	Why does a good thing become too much? Interactions between foliar nutrients and toxins determine performance of an insect herbivore. Functional Ecology, 2014, 28, 190-196.	3.6	56
48	A breath of fresh air: beyond laboratory studies of plant volatile-natural enemy interactions. Agricultural and Forest Entomology, 2002, 4, 81-86.	1.3	55
49	Does anthropogenic nitrogen deposition induce phosphorus limitation in herbivorous insects?. Global Change Biology, 2012, 18, 1843-1853.	9.5	54
50	Aphids indirectly increase virulence and transmission potential of a monarch butterfly parasite by reducing defensive chemistry of a shared food plant. Ecology Letters, 2011, 14, 453-461.	6.4	53
51	Response of soil invertebrates to forest canopy inputs along a productivity gradient. Pedobiologia, 2003, 47, 127-139.	1.2	52
52	Genetic variation in expression of defense phenotype may mediate evolutionary adaptation of Asclepias syriaca to elevated CO2. Global Change Biology, 2011, 17, 1277-1288.	9.5	52
53	Secondary Defense Chemicals in Milkweed Reduce Parasite Infection in Monarch Butterflies, Danaus plexippus. Journal of Chemical Ecology, 2015, 41, 520-523.	1.8	52
54	Effects of variation among plant species on the interaction between a herbivore and its parasitoid. Ecological Entomology, 2004, 29, 44-51.	2.2	49

#	Article	IF	CITATIONS
55	Maintenance of leaf N controls the photosynthetic CO ₂ response of grassland species exposed to 9 years of freeâ€eir CO ₂ enrichment. Global Change Biology, 2010, 16, 2076-2088.	9.5	49
56	Migratory monarchs that encounter resident monarchs show lifeâ€history differences and higher rates of parasite infection. Ecology Letters, 2018, 21, 1670-1680.	6.4	48
57	Effects of endemic densities of canopy herbivores on nutrient dynamics along a gradient in elevation in the southern Appalachians. Pedobiologia, 2003, 47, 231-244.	1.2	46
58	Interspecific Variation Within the Genus Asclepias in Response to Herbivory by a Phloem-feeding Insect Herbivore. Journal of Chemical Ecology, 2007, 33, 2044-2053.	1.8	45
59	Environmental variation has stronger effects than plant genotype on competition among plant species. Journal of Ecology, 2008, 96, 947-955.	4.0	44
60	Elevational and Seasonal Variation in the Foliar Quality and Arthropod Community ofAcer pensylvanicum. Environmental Entomology, 2009, 38, 1161-1167.	1.4	44
61	Effects of nitrogen deposition on the interaction between an aphid and its host plant. Ecological Entomology, 2008, 33, 24-30.	2.2	43
62	Climate change and an invasive, tropical milkweed: an ecological trap for monarch butterflies. Ecology, 2018, 99, 1031-1038.	3.2	43
63	Nitrogen and Phosphorus Release from Mixed Litter Layers is Lower than Predicted from Single Species Decay. Ecosystems, 2009, 12, 87-100.	3.4	42
64	Long-term population dynamics of a sawfly show strong bottom-up effects. Journal of Animal Ecology, 2005, 74, 917-925.	2.8	41
65	Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths. Global Change Biology, 2014, 20, 1723-1737.	9.5	41
66	Elevational trends in defense chemistry, vegetation, and reproduction in Sanguinaria canadensis. , 2001, 27, 1713-1727.		40
67	Transcriptomics of monarch butterflies (<i>Danaus plexippus</i>) reveals that toxic host plants alter expression of detoxification genes and downâ€regulate a small number of immune genes. Molecular Ecology, 2019, 28, 4845-4863.	3.9	40
68	Modelling Gypsy MothVirusLeaf Chemistry Interactions: Implications of Plant Quality for Pest and Pathogen Dynamics. Journal of Animal Ecology, 1992, 61, 509.	2.8	39
69	Mycorrhizal abundance affects the expression of plant resistance traits and herbivore performance. Journal of Ecology, 2013, 101, 1019-1029.	4.0	39
70	Variation in concentrations of phloridzin and phloretin in apple foliage. Phytochemistry, 1993, 34, 1251-1254.	2.9	38
71	Using Gall Wasps on Oaks to Test Broad Ecological Concepts. Conservation Biology, 2004, 18, 1405-1416.	4.7	38
72	Effects of elevated CO2 on foliar quality and herbivore damage in a scrub oak ecosystem. Journal of Chemical Ecology, 2005, 31, 267-286.	1.8	38

#	Article	IF	CITATIONS
73	Global change alters the stability of food webs. Global Change Biology, 2005, 11, 490-501.	9.5	36
74	A comparison of maternal effects and current environment on vital rates of <i>Aphis nerii</i> , the milkweed–oleander aphid. Ecological Entomology, 2007, 32, 172-180.	2.2	36
75	Fitness costs of animal medication: antiparasitic plant chemicals reduce fitness of monarch butterfly hosts. Journal of Animal Ecology, 2016, 85, 1246-1254.	2.8	36
76	Linkages between below and aboveground communities: Decomposer responses to simulated tree species loss are largely additive. Soil Biology and Biochemistry, 2009, 41, 1155-1163.	8.8	35
77	Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species. Frontiers in Plant Science, 2013, 4, 361.	3.6	35
78	Hemlock Infestation and Mortality: Impacts on Nutrient Pools and Cycling in Appalachian Forests. Soil Science Society of America Journal, 2011, 75, 1935-1945.	2.2	34
79	Investigating Predictors of Plant Establishment During Roadside Restoration. Restoration Ecology, 2012, 20, 315-321.	2.9	33
80	Chronic nitrogen deposition alters the structure and function of detrital food webs in a northern hardwood ecosystem. Ecological Applications, 2013, 23, 1311-1321.	3.8	33
81	Trophic promiscuity, intraguild predation and the problem of omnivores. Agricultural and Forest Entomology, 2009, 11, 125-131.	1.3	32
82	Rapid In Situ Analysis of Plant Emission for Disease Diagnosis Using a Portable Gas Chromatography Device. Journal of Agricultural and Food Chemistry, 2019, 67, 7530-7537.	5.2	32
83	How does global change affect the strength of trophic interactions?. Basic and Applied Ecology, 2004, 5, 505-514.	2.7	30
84	Variation in plant quality and the population dynamics of herbivores: there is nothing average about aphids. Oecologia, 2005, 145, 196-203.	2.0	29
85	Trophic stability of soil oribatid mites in the face of environmental change. Soil Biology and Biochemistry, 2014, 68, 71-77.	8.8	29
86	Antimicrobial Activity of Polyphenols Mediates Plant-Herbivore Interactions. , 1992, , 621-637.		29
87	Population-level variation in plant secondary chemistry, and the population biology of herbivores. Chemoecology, 1996, 7, 45-56.	1.1	28
88	Maternal effects and the population dynamics of insects on plants. Agricultural and Forest Entomology, 2002, 4, 1-9.	1.3	28
89	Natural Variability in Plants and Animals. , 1992, , 1-12.		28
90	Time tells: long-term patterns in the population dynamics of the yew gall midge, Taxomyia taxi (Cecidomyiidae), over 35 years. Ecological Entomology, 2005, 30, 86-95.	2.2	27

#	Article	IF	CITATIONS
91	Allocation of resources away from sites of herbivory under simultaneous attack by aboveground and belowground herbivores in the common milkweed, Asclepias syriaca. Arthropod-Plant Interactions, 2013, 7, 217-224.	1.1	27
92	Self-medication in insects: when altered behaviors of infected insects are a defense instead of a parasite manipulation. Current Opinion in Insect Science, 2019, 33, 1-6.	4.4	27
93	Factors affecting population dynamics of leaf beetles in a subarctic region: The interplay between climate warming and pollution decline. Science of the Total Environment, 2016, 566-567, 1277-1288.	8.0	26
94	Elevated atmospheric concentrations of carbon dioxide reduce monarch tolerance and increase parasite virulence by altering the medicinal properties of milkweeds. Ecology Letters, 2018, 21, 1353-1363.	6.4	26
95	Genetic variation in plant volatile emission does not result in differential attraction of natural enemies in the field. Oecologia, 2014, 174, 479-491.	2.0	25
96	Local variation in plant quality influences largeâ€scale population dynamics. Oikos, 2015, 124, 1160-1170.	2.7	25
97	Mycorrhizae Alter Constitutive and Herbivore-Induced Volatile Emissions by Milkweeds. Journal of Chemical Ecology, 2019, 45, 610-625.	1.8	25
98	Environmental and genotypic influences on isoquinoline alkaloid content in Sanguinaria canadensis. , 2001, 27, 1729-1747.		24
99	Effects of diet and temperature on monarch butterfly wing morphology and flight ability. Journal of Insect Conservation, 2020, 24, 961-975.	1.4	24
100	Arbuscular mycorrhizal fungi mediate herbivoreâ€induction of plant defenses differently above and belowground. Oikos, 2018, 127, 1759-1775.	2.7	23
101	Novelty and Synthesis in the Development of Population Dynamics. , 1995, , 389-412.		22
102	Mixed signals and cross-talk: interactions between plants, insect herbivores and plant pathogens. Agricultural and Forest Entomology, 2000, 2, 155-160.	1.3	22
103	Effects of Maternal Age and Environment on Offspring Vital Rates in the Oleander Aphid (Hemiptera:) Tj ETQq1	1 0.78431 1.4	4 rgBT /Over
104	Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host–parasite interactions. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151993.	2.6	20
105	Transâ€generational parasite protection associated with paternal diet. Journal of Animal Ecology, 2015, 84, 310-321.	2.8	20
106	Microbial Root Mutualists Affect the Predators and Pathogens of Herbivores above Ground: Mechanisms, Magnitudes, and Missing Links. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	20
107	Effects of Elevated CO2 and Herbivore Damage on Litter Quality in a Scrub Oak Ecosystem. Journal of Chemical Ecology, 2005, 31, 2343-2356.	1.8	19
108	Population Dynamics of an Insect Herbivore over 32 Years are Driven by Precipitation and Host-Plant Effects: Testing Model Predictions. Environmental Entomology, 2015, 44, 463-473.	1.4	19

#	Article	IF	CITATIONS
109	Elevated CO2 increases the long-term decomposition rate of Quercus myrtifolia leaf litter. Global Change Biology, 2006, 12, 568-577.	9.5	18
110	What Goes up Must Come down? Nutrient Addition and Predation Pressure on Oak Herbivores. Ecology, 2000, 81, 1588.	3.2	18
111	Effects of Apple Leaf Allelochemistry on Tufted Apple Bud Moth (Lepidoptera: Tortricidae) Resistance to Azinphosmethyl. Journal of Economic Entomology, 1994, 87, 1423-1429.	1.8	16
112	A Genetically-Based Latitudinal Cline in the Emission of Herbivore-Induced Plant Volatile Organic Compounds. Journal of Chemical Ecology, 2013, 39, 1101-1111.	1.8	16
113	Interactions between Operophtera brumata and Tortrix viridana on oak: new evidence from time-series analysis. Ecological Entomology, 1998, 23, 168-173.	2.2	15
114	Phytochemical changes in milkweed induced by elevated CO ₂ alter wing morphology but not toxin sequestration in monarch butterflies. Functional Ecology, 2019, 33, 411-421.	3.6	15
115	Sound production in larvae of <i>Diurnea fagella</i> (Lepidoptera: Oecophoridae). Ecological Entomology, 1987, 12, 355-357.	2.2	14
116	Soil respiration from four aggrading forested watersheds measured over a quarter century. Forest Ecology and Management, 2002, 157, 247-253.	3.2	14
117	Toxins or medicines? Phytoplankton diets mediate host and parasite fitness in a freshwater system. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182231.	2.6	14
118	Isolation and characterization of microsatellite loci in the common milkweed, <i>Asclepias syriaca</i> (Apocynaceae). American Journal of Botany, 2010, 97, e37-8.	1.7	13
119	Environmental causes and transgenerational consequences of ecdysteroid hormone provisioning in Acheta domesticus. Journal of Insect Physiology, 2018, 109, 69-78.	2.0	13
120	Geographic and parental influences on diapause by a polyphagous insect herbivore. Agricultural and Forest Entomology, 2000, 2, 49-55.	1.3	12
121	Host Diet Affects the Morphology of Monarch Butterfly Parasites. Journal of Parasitology, 2017, 103, 228-236.	0.7	12
122	Evaluation of Resistance to Tufted Apple Bud Moth (Lepidoptera: Tortricidae) Within and Among Apple Cultivars. Environmental Entomology, 1994, 23, 282-291.	1.4	11
123	Diverse population trajectories among coexisting species of subarctic forest moths. Population Ecology, 2010, 52, 295-305.	1.2	11
124	Social density, but not sex ratio, drives ecdysteroid hormone provisioning to eggs by female house crickets (<i>Acheta domesticus</i>). Ecology and Evolution, 2018, 8, 10257-10265.	1.9	11
125	Mycorrhizae Alter Toxin Sequestration and Performance of Two Specialist Herbivores. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	11
126	The Effects of Milkweed Induced Defense on Parasite Resistance in Monarch Butterflies, Danaus plexippus. Journal of Chemical Ecology, 2018, 44, 1040-1044.	1.8	11

#	Article	lF	CITATIONS
127	Between hyperbole and hysteria. Entomological issues and the deployment of transgenic plants. Agricultural and Forest Entomology, 2000, 2, 77-84.	1.3	10
128	Detecting cycles and delayed density dependence: a reply to Turchin and Berryman. Ecological Entomology, 2000, 25, 122-124.	2.2	10
129	Scale dependency of dispersal limitation, environmental filtering and biotic interactions determine the diversity and composition of oribatid mite communities. Pedobiologia, 2019, 74, 43-53.	1.2	10
130	The relative strengths of rapid and delayed density dependence acting on a terrestrial herbivore change along a pollution gradient. Journal of Animal Ecology, 2019, 88, 665-676.	2.8	10
131	Nutrient Cycling. , 2004, , 387-396.		9
132	Climate warming leads to decline in frequencies of melanic individuals in subarctic leaf beetle populations. Science of the Total Environment, 2019, 673, 237-244.	8.0	9
133	Self-Medication: A Learning Process?—Response. Science, 2013, 340, 1042-1042.	12.6	8
134	Genetic variation in plant below-ground response to elevated CO2 and two herbivore species. Plant and Soil, 2014, 384, 303-314.	3.7	8
135	Effects of soil nutrients on the sequestration of plant defence chemicals by the specialist insect herbivore, <i><scp>D</scp>anaus plexippus</i> . Ecological Entomology, 2015, 40, 123-132.	2.2	8
136	Public Health System Response to Extreme Weather Events. Journal of Public Health Management and Practice, 2016, 22, E1-E10.	1.4	8
137	The herbivore's prescription. , 2012, , 78-100.		7
138	Unraveling the roles of genotype and environment in the expression of plant defense phenotypes. Ecology and Evolution, 2021, 11, 8542-8561.	1.9	7
139	Long-term consequences ofÂbiochemical andÂbiogeochemical changes inÂtheÂHorseshoe Bend agroecosystem, Athens, GA. European Journal of Soil Biology, 2006, 42, S79-S84.	3.2	6
140	Spatial heterogeneity in the relative impacts of foliar quality and predation pressure on red oak, Quercus rubra, arthropod communities. Oecologia, 2010, 164, 1017-1027.	2.0	6
141	Effects of herbivores on terrestrial ecosystem processes. , 2012, , 339-370.		6
142	Effects of Maternal Age and Environment on Offspring Vital Rates in the Oleander Aphid (Hemiptera:) Tj ETQq0 C	0.rgBT /C	verlock 10 Tf

143	WHEN A PICTURE TAINTS A THOUSAND WORDS: TRUE IMAGES OF DIET-INDUCED DIAPAUSE IN A POLYPHAGOUS INSECT HERBIVORE (ERRATUM). Ecology, 1997, 78, 2267-2268.	3.2	5
144	Multi-trophic interactions and migration behaviour determine the ecology and evolution of parasite infection in monarch butterflice _ 2019 _ 480-510		5

infection in monarch butterflies. , 2019, , 480-510.

#	Article	IF	CITATIONS
145	Elevated atmospheric concentrations of CO ₂ increase endogenous immune function in a specialist herbivore. Journal of Animal Ecology, 2021, 90, 628-640.	2.8	3
146	Hurricane Damage Influences Foliar Polyphenolics and Subsequent Herbivory on Surviving Trees. Ecology, 1999, 80, 2676.	3.2	3
147	Interspecific variation and elevated CO 2 influence the relationship between plant chemical resistance and regrowth tolerance. Ecology and Evolution, 2020, 10, 5416-5430.	1.9	2
148	Ecological Causes of Pest Outbreaks. , 2002, , .		2
149	Variable effects of mycorrhizal fungi on predator–prey dynamics under field conditions. Journal of Animal Ecology, 2021, 90, 1341-1352.	2.8	1
150	Linking Population Processes and Ecosystem Processes Through Changes in Plant Chemistry. Bulletin of the Ecological Society of America, 2014, 95, 214-215.	0.2	0
151	Long-Term Consequences of Biological and Biogeochemical Changes in the Horseshoe Bend Long-Term Agroecosystem Project. Advances in Agroecology, 2009, , 195-209.	0.3	Ο