Viviana Echenique

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8979158/publications.pdf

Version: 2024-02-01

45 papers 2,401 citations

20 h-index 243625 44 g-index

45 all docs

45 docs citations

45 times ranked

2245 citing authors

#	Article	IF	CITATIONS
1	Population structure, allelic variation at Rht-B1 and Ppd-A1 loci and its effects on agronomic traits in Argentinian durum wheat. Scientific Reports, 2022, 12 , .	3.3	9
2	Linkage disequilibrium patterns, population structure and diversity analysis in a worldwide durum wheat collection including Argentinian genotypes. BMC Genomics, 2021, 22, 233.	2.8	17
3	Differential Methylation Patterns in Apomictic vs. Sexual Genotypes of the Diplosporous Grass Eragrostis curvula. Plants, 2021, 10, 946.	3.5	6
4	Association of novel characterized sequence variations in the \hat{I}_{\P} -carotene desaturase (Zds) gene with yellow color and yellow pigment content in durum wheat cultivars. Journal of Cereal Science, 2021, 99, 103185.	3.7	2
5	Eragrostis curvula, a Model Species for Diplosporous Apomixis. Plants, 2021, 10, 1818.	3.5	4
6	Genetic Transformation of Apomictic Grasses: Progress and Constraints. Frontiers in Plant Science, 2021, 12, 768393.	3.6	7
7	Allelic Variation at Glutenin Loci (Glu-1, Glu-2 and Glu-3) in a Worldwide Durum Wheat Collection and Its Effect on Quality Attributes. Foods, 2021, 10, 2845.	4.3	14
8	Genes Modulating the Increase in Sexuality in the Facultative Diplosporous Grass Eragrostis curvula under Water Stress Conditions. Genes, 2020, 11 , 969 .	2.4	13
9	The Global Durum Wheat Panel (GDP): An International Platform to Identify and Exchange Beneficial Alleles. Frontiers in Plant Science, 2020, 11, 569905.	3.6	44
10	A high-quality genome of Eragrostis curvula grass provides insights into Poaceae evolution and supports new strategies to enhance forage quality. Scientific Reports, 2019, 9, 10250.	3.3	27
11	A High-Density Linkage Map of the Forage Grass Eragrostis curvula and Localization of the Diplospory Locus. Frontiers in Plant Science, 2019, 10, 918.	3.6	12
12	Genetic diversity and linkage disequilibrium using SNP (KASP) and AFLP markers in a worldwide durum wheat (Triticum turgidum L. var durum) collection. PLoS ONE, 2019, 14, e0218562.	2.5	28
13	Characterization and discovery of miRNA and miRNA targets from apomictic and sexual genotypes of Eragrostis curvula. BMC Genomics, 2019, 20, 839.	2.8	15
14	Biocontrol of Fusarium graminearum sensu stricto, Reduction of Deoxynivalenol Accumulation and Phytohormone Induction by Two Selected Antagonists. Toxins, 2018, 10, 88.	3 . 4	49
15	QTL mapping and analysis of epistatic interactions for grain yield and yield-related traits in Triticum turgidum L. var. durum. Euphytica, 2017, 213, 1.	1.2	48
16	Temporal and spatial expression of genes involved in DNA methylation during reproductive development of sexual and apomictic Eragrostis curvula. Scientific Reports, 2017, 7, 15092.	3.3	22
17	Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula). PLoS ONE, 2017, 12, e0175852.	2.5	87
18	De novo transcriptome sequencing and assembly from apomictic and sexual Eragrostis curvula genotypes. PLoS ONE, 2017, 12, e0185595.	2.5	30

#	Article	IF	Citations
19	Repetitive sequences in Eragrostis curvula cDNA EST libraries obtained from genotypes with different ploidy. Biologia Plantarum, 2016, 60, 55-67.	1.9	7
20	Identification of genes induced by Fusarium graminearum inoculation in the resistant durum wheat line Langdon(Dic-3A)10 and the susceptible parental line Langdon. Microbiological Research, 2015, 177, 53-66.	5. 3	7
21	Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes. BMC Genomics, 2015, 16, 375.	2.8	16
22	New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing. Plant Science, 2015, 233, 200-212.	3.6	20
23	Identification, mapping and evolutionary course of wheat lipoxygenase-1 genes located on the A genome. Journal of Cereal Science, 2013, 58, 298-304.	3.7	11
24	Weeping Lovegrass Yield and Nutritive Value Provides an Alternative to Beef Cattle Feeding in Semiarid Environments of Argentina. Crop Science, 2012, 52, 1955-1965.	1.8	2
25	QTL analysis of main and epistatic effects for flour color traits in durum wheat. Euphytica, 2012, 185, 77-92.	1.2	81
26	Evaluation of different methods for assessing the reproductive mode of weeping lovegrass plants, Eragrostis curvula (Schrad.) Nees. Australian Journal of Botany, 2011, 59, 253.	0.6	30
27	Functional characterization of three cDNA libraries from the diploid wheatTriticum monoccocum(AmAm) with different growth habits. Cereal Research Communications, 2011, 39, 475-486.	1.6	0
28	Mapping of main and epistatic effect QTLs associated to grain protein and gluten strength using a RIL population of durum wheat. Journal of Applied Genetics, 2011, 52, 287-298.	1.9	64
29	Molecular markers to study the variability within the Eragrostis curvula complex. Phyton, 2011, 80, 211-220.	0.7	3
30	Allele-specific expression of a weeping lovegrass gene from the lignin biosynthetic pathway, caffeoyl-coenzyme A 3-O-methyltransferase. Molecular Breeding, 2010, 26, 627-637.	2.1	4
31	Physical mapping of durum wheat lipoxygenase genes. Journal of Cereal Science, 2009, 50, 67-73.	3.7	23
32	Expressed sequence tag analysis and development of gene associated markers in a near-isogenic plant system of Eragrostis curvula. Plant Molecular Biology, 2008, 67, 1-10.	3.9	51
33	Gene expression in diplosporous and sexual Eragrostis curvula genotypes with differing ploidy levels. Plant Molecular Biology, 2008, 67, 11-23.	3.9	53
34	QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theoretical and Applied Genetics, 2008, 117, 1361-1377.	3.6	137
35	Genome polymorphisms and gene differential expression in a  back-and-forth' ploidy-altered series of weeping lovegrass (Eragrostis curvula). Journal of Plant Physiology, 2007, 164, 1051-1061.	3.5	28
36	A deletion at the Lpx-B1 locus is associated with low lipoxygenase activity and improved pasta color in durum wheat (Triticum turgidum ssp. durum). Journal of Cereal Science, 2007, 45, 67-77.	3.7	88

#	Article	IF	CITATION
37	Novel genotypes of the subtropical grass Eragrostis curvula for the study of apomixis (diplospory). Euphytica, 2006, 151, 263-272.	1.2	14
38	Construction and Evaluation of cDNA Libraries for Large-Scale Expressed Sequence Tag Sequencing in Wheat (Triticum aestivum L.). Genetics, 2004, 168, 595-608.	2.9	57
39	The Wheat <i>VRN2</i> Gene Is a Flowering Repressor Down-Regulated by Vernalization. Science, 2004, 303, 1640-1644.	12.6	999
40	Precise mapping of a locus affecting grain protein content in durum wheat. Theoretical and Applied Genetics, 2003, 107, 1243-1251.	3.6	170
41	Frequencies of Ty1-copia and Ty3-gypsy retroelements within the Triticeae EST databases. Theoretical and Applied Genetics, 2002, 104, 840-844.	3.6	45
42	Cereal genes similar to Snf2 define a new subfamily that includes human and mouse genes. Molecular Genetics and Genomics, 2002, 268, 488-499.	2.1	17
43	Genetic analysis of variation in micropropagated plants of Melia azedarach L In Vitro Cellular and Developmental Biology - Plant, 2002, 38, 617-622.	2.1	15
44	Embryogenic cell suspensions from different explants and cultivars of Eragrostis curvula (Schrad.) Nees. Biocell, 2001, 25, 131-8.	0.7	3
45	Plant regeneration in weeping lovegrass, (Eragrostis curvula) through inflorescence culture. Plant Cell, Tissue and Organ Culture, 1996, 46, 123-130.	2.3	22