
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8978169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Engineering of Polyoxovanadate-Alkoxide Clusters and Microporous Polymer Membranes to Prevent Crossover in Redox-Flow Batteries. ACS Applied Materials & Interfaces, 2022, 14, 22965-22972.	8.0	4
2	Oxygen-Atom Defect Formation in Polyoxovanadate Clusters via Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2022, 144, 5029-5041.	13.7	15
3	Charge-State Dependence of Proton Uptake in Polyoxovanadate-alkoxide Clusters. Inorganic Chemistry, 2022, 61, 4789-4800.	4.0	9
4	Synthesis and Characterization of Pyridine Dipyrrolide Uranyl Complexes. Inorganic Chemistry, 2022, 61, 6182-6192.	4.0	3
5	Mechanistic insight into rapid oxygen-atom transfer from a calix-functionalized polyoxovanadate. Chemical Communications, 2022, , .	4.1	2
6	Surface ligands influence the selectivity of cation uptake in polyoxovanadate–alkoxide clusters. Journal of Materials Chemistry A, 2022, 10, 12070-12078.	10.3	5
7	Characterizing Polyoxovanadateâ€Alkoxide Clusters Using Vanadium Kâ€Edge Xâ€Ray Absorption Spectroscopy. Chemistry - A European Journal, 2021, 27, 1592-1597.	3.3	1
8	Physicochemical Factors That Influence the Deoxygenation of Oxyanions in Atomically Precise, Oxygen-Deficient Vanadium Oxide Assemblies. Inorganic Chemistry, 2021, 60, 6855-6864.	4.0	8
9	Atomically precise vanadium-oxide clusters. Nanoscale Advances, 2021, 3, 1293-1318.	4.6	37
10	Reductive silylation of polyoxovanadate surfaces using Mashima's reagent. Inorganic Chemistry Frontiers, 2021, 8, 4507-4516.	6.0	3
11	Modelling local structural and electronic consequences of proton and hydrogen-atom uptake in VO ₂ with polyoxovanadate clusters. Chemical Science, 2021, 12, 12744-12753.	7.4	9
12	Development of sterically hindered siloxide-functionalized polyoxotungstates for the complexation of 5d-metals. Dalton Transactions, 2021, 50, 4300-4310.	3.3	0
13	Light-driven hydrogen production with CdSe quantum dots and a cobalt glutathione catalyst. Chemical Communications, 2021, 57, 2053-2056.	4.1	12
14	O ₂ Activation with a Sterically Encumbered, Oxygen-Deficient Polyoxovanadate-Alkoxide Cluster. Inorganic Chemistry, 2021, 60, 13833-13843.	4.0	8
15	Concerted Multiproton–Multielectron Transfer for the Reduction of O ₂ to H ₂ O with a Polyoxovanadate Cluster. Journal of the American Chemical Society, 2021, 143, 15756-15768.	13.7	24
16	Physicochemical implications of surface alkylation of high-valent, Lindqvist-type polyoxovanadate-alkoxide clusters. Nanoscale, 2021, 13, 6162-6173.	5.6	3
17	Site-Selective Halogenation of Polyoxovanadate Clusters: Atomically Precise Models for Electronic Effects of Anion Doping in VO ₂ . Journal of the American Chemical Society, 2020, 142, 1049-1056.	13.7	33
18	Low- and Mid-Valent Uranium Species Supported by Phenyltris(oxazolinyl)borate Ligands. Organometallics, 2020, 39, 353-360.	2.3	9

#	Article	IF	CITATIONS
19	Conversion of NO _x ^{1â^'} (<i>x</i> = 2, 3) to NO using an oxygen-deficient polyoxovanadate–alkoxide cluster. Chemical Communications, 2020, 56, 555-558.	4.1	17
20	Hydrogen bonding promotes diversity in nitrite coordination modes at a single iron(II) center. Journal of Coordination Chemistry, 2020, 73, 2664-2676.	2.2	3
21	Oxygen-atom vacancy formation and reactivity in polyoxovanadate clusters. Chemical Communications, 2020, 56, 13477-13490.	4.1	22
22	Electrocatalytic Multielectron Nitrite Reduction in Water by an Iron Complex. ACS Catalysis, 2020, 10, 13968-13972.	11.2	34
23	Polyoxometalate-based complexes as ligands for the study of actinide chemistry. Dalton Transactions, 2020, 49, 13917-13927.	3.3	15
24	Acid-Induced, Oxygen-Atom Defect Formation in Reduced Polyoxovanadate-Alkoxide Clusters. Journal of the American Chemical Society, 2020, 142, 9915-9919.	13.7	31
25	Electronic Consequences of Ligand Substitution at Heterometal Centers in Polyoxovanadium Clusters: Controlling the Redox Properties through Heterometal Coordination Number. Chemistry - A European Journal, 2020, 26, 9905-9914.	3.3	13
26	Site-selective halogenation of mixed-valent vanadium oxide clusters. Dalton Transactions, 2020, 49, 16184-16192.	3.3	6
27	Mechanistic insights into polyoxometalate self-assembly in organic solvent: conversion of a cyclic polyoxovanadate-ethoxide to its Lindqvist congener. Chemical Communications, 2020, 56, 8607-8610.	4.1	8
28	Enhancing the activity of photocatalytic hydrogen evolution from CdSe quantum dots with a polyoxovanadate cluster. Chemical Communications, 2020, 56, 8762-8765.	4.1	21
29	Oxygen atom transfer with organofunctionalized polyoxovanadium clusters: O-atom vacancy formation with tertiary phosphanes and deoxygenation of styrene oxide. Chemical Science, 2019, 10, 8035-8045.	7.4	25
30	Synthesis and Characterization of (^{DIPP} CCC)Fe Complexes: A Zwitterionic Metalation Method and CO ₂ Reactivity. Organometallics, 2019, 38, 2943-2952.	2.3	13
31	Investigation of Cubic Fe 4 M 4 Frameworks for Application in Nonaqueous Energy Storage. Chemistry - A European Journal, 2019, 25, 14421-14429.	3.3	1
32	Characterization of Terminal Iron(III)–Oxo and Iron(III)–Hydroxo Complexes Derived from O ₂ Activation. Inorganic Chemistry, 2019, 58, 15801-15811.	4.0	24
33	Progress in the Design of Polyoxovanadate-Alkoxides as Charge Carriers for Nonaqueous Redox Flow Batteries. Comments on Inorganic Chemistry, 2019, 39, 51-89.	5.2	17
34	Ligand derivatization of titanium-functionalized polyoxovanadium–alkoxide clusters. Polyhedron, 2019, 167, 119-126.	2.2	4
35	Consequences of ligand derivatization on the electronic properties of polyoxovanadate-alkoxide clusters. Journal of Coordination Chemistry, 2019, 72, 1267-1286.	2.2	13
36	Controlling Metal-to-Oxygen Ratios via Mâ•O Bond Cleavage in Polyoxovanadate Alkoxide Clusters. Inorganic Chemistry, 2019, 58, 10462-10471.	4.0	19

#	Article	IF	CITATIONS
37	Transport and Electron Transfer Kinetics of Polyoxovanadate-Alkoxide Clusters. Journal of the Electrochemical Society, 2019, 166, A464-A472.	2.9	19
38	Physicochemical implications of alkoxide "mixing―in polyoxovanadium clusters for nonaqueous energy storage. Journal of Materials Chemistry A, 2019, 7, 4893-4902.	10.3	31
39	Surface functionalization of polyoxovanadium clusters: generation of highly soluble charge carriers for nonaqueous energy storage. Chemical Communications, 2019, 55, 12247-12250.	4.1	19
40	An Organofunctionalized Polyoxovanadium Cluster as a Molecular Model of Interfacial Pseudocapacitance. ACS Applied Energy Materials, 2019, 2, 8985-8993.	5.1	17
41	Site-selectivity in the halogenation of titanium-functionalized polyoxovanadate–alkoxide clusters. Chemical Communications, 2018, 54, 6839-6842.	4.1	23
42	Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries. Chemical Science, 2018, 9, 1692-1699.	7.4	129
43	Tuning the redox profiles of polyoxovanadate-alkoxide clusters <i>via</i> heterometal installation: toward designer redox Reagents. Dalton Transactions, 2018, 47, 3698-3704.	3.3	42
44	Synthesis of a gallium-functionalized polyoxovanadate-alkoxide cluster: Toward a general route for heterometal installation. Polyhedron, 2018, 156, 303-311.	2.2	21
45	Organic Functionalization of Polyoxovanadate–Alkoxide Clusters: Improving the Solubility of Multimetallic Charge Carriers for Nonaqueous Redox Flow Batteries. ChemSusChem, 2018, 11, 4139-4149.	6.8	49
46	Nitric oxide activation facilitated by cooperative multimetallic electron transfer within an iron-functionalized polyoxovanadate–alkoxide cluster. Chemical Science, 2018, 9, 6379-6389.	7.4	20
47	Oxygen-Atom Vacancy Formation at Polyoxovanadate Clusters: Homogeneous Models for Reducible Metal Oxides. Journal of the American Chemical Society, 2018, 140, 8424-8428.	13.7	59
48	Heterometal functionalization yields improved energy density for charge carriers in nonaqueous redox flow batteries. Journal of Materials Chemistry A, 2018, 6, 13874-13882.	10.3	52
49	Manganese-Catalyzed Kumada Cross-Coupling Reactions of Aliphatic Grignard Reagents with N-Heterocyclic Chlorides. Synlett, 2018, 29, 1700-1706.	1.8	10
50	Tuning the Fe(II/III) Redox Potential in Nonheme Fe(II)–Hydroxo Complexes through Primary and Secondary Coordination Sphere Modifications. Inorganic Chemistry, 2017, 56, 4852-4863.	4.0	35
51	Polyoxovanadate–Alkoxide Clusters as a Redox Reservoir for Iron. Inorganic Chemistry, 2017, 56, 7065-7080.	4.0	48
52	Expanding the Family of Uranium(III) Alkyls: Synthesis and Characterization of Mixed‣igand Derivatives. European Journal of Inorganic Chemistry, 2016, 2016, 2527-2533.	2.0	14
53	Self-Assembled, Iron-Functionalized Polyoxovanadate Alkoxide Clusters. Inorganic Chemistry, 2016, 55, 7332-7334.	4.0	47
54	A bioinspired iron catalyst for nitrate and perchlorate reduction. Science, 2016, 354, 741-743.	12.6	159

#	Article	IF	CITATIONS
55	Monoanionic bis(carbene) pincer complexes featuring cobalt(<scp>l–III</scp>) oxidation states. Dalton Transactions, 2016, 45, 9805-9811.	3.3	50
56	Exploring Mn–O bonding in the context of an electronically flexible secondary coordination sphere: synthesis of a Mn(<scp>iii</scp>)–oxo. Chemical Communications, 2015, 51, 5310-5313.	4.1	31
57	Synthesis and characterization of M(<scp>ii</scp>) (M = Mn, Fe and Co) azafulvene complexes and their X ₃ ^{â^'} derivatives. Dalton Transactions, 2015, 44, 10377-10384.	3.3	15
58	Nickel(II) Pincer Carbene Complexes: Oxidative Addition of an Aryl C–H Bond to Form a Ni(II) Hydride. Organometallics, 2015, 34, 399-407.	2.3	48
59	Isolation of a uranium(<scp>iii</scp>) benzophenone ketyl radical that displays redox-active ligand behaviour. Dalton Transactions, 2014, 43, 17885-17888.	3.3	27
60	Meridional vs. facial coordination geometries of a dipodal ligand framework featuring a secondary coordination sphere. Dalton Transactions, 2014, 43, 16992-16995.	3.3	11
61	Trivalent Uranium Phenylchalcogenide Complexes: Exploring the Bonding and Reactivity with CS ₂ in the Tp* ₂ UEPh Series (E = O, S, Se, Te). Inorganic Chemistry, 2014, 53, 12977-12985.	4.0	29
62	Facile Nitrite Reduction in a Non-heme Iron System: Formation of an Iron(III)-Oxo. Journal of the American Chemical Society, 2014, 136, 17398-17401.	13.7	89
63	Isolation of Iron(II) Aqua and Hydroxyl Complexes Featuring a Tripodal H-bond Donor and Acceptor Ligand. Inorganic Chemistry, 2014, 53, 4450-4458.	4.0	55
64	Multielectron C–O Bond Activation Mediated by a Family of Reduced Uranium Complexes. Inorganic Chemistry, 2014, 53, 3730-3741.	4.0	54
65	Radical Reductive Elimination from Tetrabenzyluranium Mediated by an Iminoquinone Ligand. Organometallics, 2014, 33, 1964-1971.	2.3	38
66	Synthesis and Reactivity of Trivalent Tp*U(CH ₂ Ph) ₂ (THF): Insertion vs Oxidation at Low-Valent Uranium–Carbon Bonds. Organometallics, 2013, 32, 1484-1492.	2.3	37
67	"Oxidative Addition―of Halogens to Uranium(IV) Bis(amidophenolate) Complexes. Inorganic Chemistry, 2013, 52, 7295-7304.	4.0	40
68	Tris(phosphinoamide)-Supported Uranium–Cobalt Heterobimetallic Complexes Featuring Co → U Dative Interactions. Inorganic Chemistry, 2013, 52, 12170-12177.	4.0	53
69	Synthesis of Terminal Uranium(IV) Disulfido and Diselenido Compounds by Activation of Elemental Sulfur and Selenium. Chemistry - A European Journal, 2013, 19, 16176-16180.	3.3	40
70	Synthesis of U(iv) imidos from Tp*2U(CH2Ph) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate) by extrusion of bibenzyl. Dalton Transactions, 2012, 41, 7952.	3.3	67
71	Use of Alkylsodium Reagents for the Synthesis of Trivalent Uranium Alkyl Complexes. Organometallics, 2012, 31, 4467-4473.	2.3	39
72	Diazoalkane Reduction for the Synthesis of Uranium Hydrazonido Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 5471-5478.	2.0	43

#	Article	IF	CITATIONS
73	Formation of Trivalent U–C, U–N, and U–S Bonds and Their Reactivity toward Carbon Dioxide and Acetone. Organometallics, 2011, 30, 5753-5762.	2.3	66
74	Functionalization of Carbon Dioxide and Carbon Disulfide Using a Stable Uranium(III) Alkyl Complex. Journal of the American Chemical Society, 2011, 133, 4948-4954.	13.7	103