Matthew M Bogyo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8977981/publications.pdf Version: 2024-02-01

		6606	11047
274	22,691	79	137
papers	citations	h-index	g-index
342	342	342	21996
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sec6l-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature, 1996, 384, 432-438.	13.7	1,054
2	The Human Cytomegalovirus US11 Gene Product Dislocates MHC Class I Heavy Chains from the Endoplasmic Reticulum to the Cytosol. Cell, 1996, 84, 769-779.	13.5	1,035
3	Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell, 2004, 5, 443-453.	7.7	582
4	Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chemistry and Biology, 2000, 7, 569-581.	6.2	530
5	Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nature Chemical Biology, 2007, 3, 668-677.	3.9	424
6	Substrate Profiling of Cysteine Proteases Using a Combinatorial Peptide Library Identifies Functionally Unique Specificities. Journal of Biological Chemistry, 2006, 281, 12824-12832.	1.6	370
7	Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nature Nanotechnology, 2011, 6, 594-602.	15.6	358
8	Tumor Cell–Derived and Macrophage-Derived Cathepsin B Promotes Progression and Lung Metastasis of Mammary Cancer. Cancer Research, 2006, 66, 5242-5250.	0.4	336
9	Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nature Chemical Biology, 2005, 1, 203-209.	3.9	331
10	A Cathepsin L Isoform that Is Devoid of a Signal Peptide Localizes to the Nucleus in S Phase and Processes the CDP/Cux Transcription Factor. Molecular Cell, 2004, 14, 207-219.	4.5	324
11	Activity-based probes that target diverse cysteine protease families. Nature Chemical Biology, 2005, 1, 33-38.	3.9	321
12	Activity-Based Profiling of Proteases. Annual Review of Biochemistry, 2014, 83, 249-273.	5.0	303
13	Chemical Approaches for Functionally Probing the Proteome. Molecular and Cellular Proteomics, 2002, 1, 60-68.	2.5	276
14	Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. Journal of Experimental Medicine, 2011, 208, 643-651.	4.2	276
15	Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nature Medicine, 2009, 15, 967-973.	15.2	273
16	A proteolytic system that compensates for loss of proteasome function. Nature, 1998, 392, 618-622.	13.7	266
17	A Role for the Protease Falcipain 1 in Host Cell Invasion by the Human Malaria Parasite. Science, 2002, 298, 2002-2006.	6.0	265
18	Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nature Chemical Biology, 2008, 4, 203-213.	3.9	230

#	Article	IF	CITATIONS
19	Tagging and detection strategies for activity-based proteomics. Current Opinion in Chemical Biology, 2007, 11, 20-28.	2.8	222
20	Chemical proteomics and its application to drug discovery. Current Opinion in Biotechnology, 2003, 14, 87-95.	3.3	212
21	Multiple Cathepsins Promote Pro–IL-1β Synthesis and NLRP3-Mediated IL-1β Activation. Journal of Immunology, 2015, 195, 1685-1697.	0.4	208
22	Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature, 2016, 530, 233-236.	13.7	208
23	Activity-based probes as a tool for functional proteomic analysis of proteases. Expert Review of Proteomics, 2008, 5, 721-730.	1.3	204
24	Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic substrate analogs. Chemistry and Biology, 2000, 7, 27-38.	6.2	201
25	A Bright Future for Precision Medicine: Advances in Fluorescent Chemical Probe Design and Their Clinical Application. Cell Chemical Biology, 2016, 23, 122-136.	2.5	200
26	Cathepsin L in secretory vesicles functions as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9590-9595.	3.3	199
27	Vasohibins/SVBP are tubulin carboxypeptidases (TCPs) that regulate neuron differentiation. Science, 2017, 358, 1448-1453.	6.0	198
28	Regulation of Collagenase Activities of Human Cathepsins by Glycosaminoglycans. Journal of Biological Chemistry, 2004, 279, 5470-5479.	1.6	194
29	Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors: when reaction mechanism is more important than specificity. Cell Death and Differentiation, 2003, 10, 881-888.	5.0	187
30	Improved Quenched Fluorescent Probe for Imaging of Cysteine Cathepsin Activity. Journal of the American Chemical Society, 2013, 135, 14726-14730.	6.6	175
31	Cathepsin B Inhibition Limits Bone Metastasis in Breast Cancer. Cancer Research, 2012, 72, 1199-1209.	0.4	173
32	Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. Chemistry and Biology, 1998, 5, 307-320.	6.2	168
33	Subclassification and Biochemical Analysis of Plant Papain-Like Cysteine Proteases Displays Subfamily-Specific Characteristics Â. Plant Physiology, 2012, 158, 1583-1599.	2.3	166
34	Cathepsin V, a Novel and Potent Elastolytic Activity Expressed in Activated Macrophages. Journal of Biological Chemistry, 2004, 279, 36761-36770.	1.6	165
35	Small Molecule Affinity Fingerprinting. Chemistry and Biology, 2002, 9, 1085-1094.	6.2	158
36	Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Current Opinion in Chemical Biology, 2011, 15, 798-805.	2.8	157

#	Article	IF	CITATIONS
37	Hemoglobin Digestion in Blood-Feeding Ticks: Mapping a Multipeptidase Pathway by Functional Proteomics. Chemistry and Biology, 2009, 16, 1053-1063.	6.2	156
38	Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Molecular and Biochemical Parasitology, 2001, 118, 61-73.	0.5	155
39	Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. ELife, 2016, 5, e13663.	2.8	154
40	Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase. Molecular and Biochemical Parasitology, 2003, 131, 65-75.	0.5	147
41	Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Science Translational Medicine, 2017, 9, .	5.8	147
42	Inhibition of NGLY1 Inactivates the Transcription Factor Nrf1 and Potentiates Proteasome Inhibitor Cytotoxicity. ACS Central Science, 2017, 3, 1143-1155.	5.3	146
43	New approaches for dissecting protease functions to improve probe development and drug discovery. Nature Structural and Molecular Biology, 2012, 19, 9-16.	3.6	143
44	How an Inhibitor of the HIV-I Protease Modulates Proteasome Activity. Journal of Biological Chemistry, 1999, 274, 35734-35740.	1.6	138
45	Inhibition of cathepsin B reduces β-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate β-secretase of Alzheimer's disease. Biological Chemistry, 2005, 386, 931-40.	1.2	138
46	Target deconvolution techniques in modern phenotypic profiling. Current Opinion in Chemical Biology, 2013, 17, 118-126.	2.8	137
47	Activity Profiling of Papain-Like Cysteine Proteases in Plants. Plant Physiology, 2004, 135, 1170-1178.	2.3	135
48	Rab35 Controls Actin Bundling by Recruiting Fascin as an Effector Protein. Science, 2009, 325, 1250-1254.	6.0	131
49	Functional Imaging of Legumain in Cancer Using a New Quenched Activity-Based Probe. Journal of the American Chemical Society, 2013, 135, 174-182.	6.6	131
50	Enzyme activity – it's all about image. Trends in Cell Biology, 2004, 14, 29-35.	3.6	128
51	Caspase-8 Association with the Focal Adhesion Complex Promotes Tumor Cell Migration and Metastasis. Cancer Research, 2009, 69, 3755-3763.	0.4	125
52	Successful Translation of Fluorescence Navigation During Oncologic Surgery: A Consensus Report. Journal of Nuclear Medicine, 2016, 57, 144-150.	2.8	125
53	O-Sulfonation of Serine and Threonine. Molecular and Cellular Proteomics, 2004, 3, 429-440.	2.5	122
54	Increased Expression and Activity of Nuclear Cathepsin L in Cancer Cells Suggests a Novel Mechanism of Cell Transformation. Molecular Cancer Research, 2007, 5, 899-907.	1.5	119

MATTHEW M BOGYO

#	Article	IF	CITATIONS
55	Identification of Early Intermediates of Caspase Activation Using Selective Inhibitors and Activity-Based Probes. Molecular Cell, 2006, 23, 509-521.	4.5	117
56	A small-molecule antivirulence agent for treating <i>Clostridium difficile</i> infection. Science Translational Medicine, 2015, 7, 306ra148.	5.8	117
57	Activity Based Probes for Proteases: Applications to Biomarker Discovery,Molecular Imaging and Drug Screening. Current Pharmaceutical Design, 2007, 13, 253-261.	0.9	116
58	Commonly used caspase inhibitors designed based on substrate specificity profiles lack selectivity. Cell Research, 2006, 16, 961-963.	5.7	114
59	Small Molecule-Induced Allosteric Activation of the <i>Vibrio cholerae</i> RTX Cysteine Protease Domain. Science, 2008, 322, 265-268.	6.0	112
60	Release of Signal Peptide Fragments into the Cytosol Requires Cleavage in the Transmembrane Region by a Protease Activity That Is Specifically Blocked by a Novel Cysteine Protease Inhibitor. Journal of Biological Chemistry, 2000, 275, 30951-30956.	1.6	111
61	Activity-Based Protein Profiling. Molecular Diagnosis and Therapy, 2004, 4, 371-381.	3.3	110
62	VEGF-A Induces Angiogenesis by Perturbing the Cathepsin-Cysteine Protease Inhibitor Balance in Venules, Causing Basement Membrane Degradation and Mother Vessel Formation. Cancer Research, 2009, 69, 4537-4544.	0.4	110
63	Activityâ€based probes for the ubiquitin conjugation–deconjugation machinery: new chemistries, new tools, and new insights. FEBS Journal, 2017, 284, 1555-1576.	2.2	109
64	Inhibition of Cysteine Cathepsin Protease Activity Enhances Chemotherapy Regimens by Decreasing Tumor Growth and Invasiveness in a Mouse Model of Multistage Cancer. Cancer Research, 2007, 67, 7378-7385.	0.4	108
65	Live-cell imaging demonstrates extracellular matrix degradation in association with active cathepsin B in caveolae of endothelial cells during tube formation. Experimental Cell Research, 2009, 315, 1234-1246.	1.2	105
66	PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity, 2018, 49, 247-263.e7.	6.6	104
67	A Nonpeptidic Cathepsin S Activity-Based Probe for Noninvasive Optical Imaging of Tumor-Associated Macrophages. Chemistry and Biology, 2012, 19, 619-628.	6.2	103
68	Design of Protease Activated Optical Contrast Agents That Exploit a Latent Lysosomotropic Effect for Use in Fluorescence-Guided Surgery. ACS Chemical Biology, 2015, 10, 1977-1988.	1.6	102
69	Defining a Link between Gap Junction Communication, Proteolysis, and Cataract Formation. Journal of Biological Chemistry, 2001, 276, 28999-29006.	1.6	101
70	Proteomic Analysis of Fractionated Toxoplasma Oocysts Reveals Clues to Their Environmental Resistance. PLoS ONE, 2012, 7, e29955.	1.1	101
71	Chemical Strategies To Target Bacterial Virulence. Chemical Reviews, 2017, 117, 4422-4461.	23.0	100
72	Non-invasive Imaging of Idiopathic Pulmonary Fibrosis Using Cathepsin Protease Probes. Scientific Reports, 2016, 6, 19755.	1.6	97

5

#	Article	IF	CITATIONS
73	Aminopeptidase Fingerprints, an Integrated Approach for Identification of Good Substrates and Optimal Inhibitors. Journal of Biological Chemistry, 2010, 285, 3310-3318.	1.6	94
74	Global Analysis of Palmitoylated Proteins in Toxoplasma gondii. Cell Host and Microbe, 2015, 18, 501-511.	5.1	90
75	Targeted disruption of Plasmodium falciparum cysteine protease, falcipain 1, reduces oocyst production, not erythrocytic stage growth. Molecular Microbiology, 2004, 53, 243-250.	1.2	88
76	Acid-Mediated Tumor Proteolysis: Contribution of Cysteine Cathepsins. Neoplasia, 2013, 15, 1125-IN9.	2.3	88
77	Reactive-site-centric chemoproteomics identifies a distinct class of deubiquitinase enzymes. Nature Communications, 2018, 9, 1162.	5.8	85
78	AND-gate contrast agents for enhanced fluorescence-guided surgery. Nature Biomedical Engineering, 2021, 5, 264-277.	11.6	84
79	Small-Molecule Inhibitors and Probes for Ubiquitin- and Ubiquitin-Like-Specific Proteases. ChemBioChem, 2005, 6, 287-291.	1.3	82
80	The lysosomal protein cathepsin L is a progranulin protease. Molecular Neurodegeneration, 2017, 12, 55.	4.4	81
81	Falstatin, a Cysteine Protease Inhibitor of Plasmodium falciparum, Facilitates Erythrocyte Invasion. PLoS Pathogens, 2006, 2, e117.	2.1	80
82	Proteomics Evaluation of Chemically Cleavable Activity-based Probes. Molecular and Cellular Proteomics, 2007, 6, 1761-1770.	2.5	80
83	IrAE – An asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. International Journal for Parasitology, 2007, 37, 713-724.	1.3	79
84	Autocatalytic processing of procathepsin B is triggered by proenzyme activity. FEBS Journal, 2009, 276, 660-668.	2.2	78
85	Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin. Nature Chemical Biology, 2009, 5, 469-478.	3.9	77
86	Validation of the Proteasome as a Therapeutic Target in Plasmodium Using an Epoxyketone Inhibitor with Parasite-Specific Toxicity. Chemistry and Biology, 2012, 19, 1535-1545.	6.2	76
87	Development of Near-Infrared Fluorophore (NIRF)-Labeled Activity-Based Probes for <i>in Vivo</i> Imaging of Legumain. ACS Chemical Biology, 2010, 5, 233-243.	1.6	75
88	Challenges for Targeting SARS-CoV-2 Proteases as a Therapeutic Strategy for COVID-19. ACS Infectious Diseases, 2021, 7, 1457-1468.	1.8	75
89	Application of activity-based probes to the study of enzymes involved in cancer progression. Current Opinion in Genetics and Development, 2008, 18, 97-106.	1.5	74
90	Simplified, Enhanced Protein Purification Using an Inducible, Autoprocessing Enzyme Tag. PLoS ONE, 2009, 4, e8119.	1.1	74

#	Article	IF	CITATIONS
91	Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes and Development, 2013, 27, 2086-2098.	2.7	74
92	Probing Structural Determinants Distal to the Site of Hydrolysis that Control Substrate Specificity of the 20S Proteasome. Chemistry and Biology, 2002, 9, 655-662.	6.2	73
93	Development of activity-based probes for trypsin-family serine proteases. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2882-2885.	1.0	73
94	Comparative Assessment of Substrates and Activity Based Probes as Tools for Non-Invasive Optical Imaging of Cysteine Protease Activity. PLoS ONE, 2009, 4, e6374.	1.1	72
95	Caspase-3 feeds back on caspase-8, Bid and XIAP in type I Fas signaling in primary mouse hepatocytes. Apoptosis: an International Journal on Programmed Cell Death, 2012, 17, 503-515.	2.2	72
96	Toxoplasma depends on lysosomal consumption of autophagosomes for persistent infection. Nature Microbiology, 2017, 2, 17096.	5.9	72
97	Detection of Intestinal Cancer by Local, Topical Application of a Quenched Fluorescence Probe for Cysteine Cathepsins. Chemistry and Biology, 2015, 22, 148-158.	6.2	69
98	Design, Synthesis, and Evaluation of In Vivo Potency and Selectivity of Epoxysuccinyl-Based Inhibitors of Papain-Family Cysteine Proteases. Chemistry and Biology, 2007, 14, 499-511.	6.2	67
99	The Antimalarial Natural Product Symplostatin 4 Is a Nanomolar Inhibitor of the Food Vacuole Falcipains. Chemistry and Biology, 2012, 19, 1546-1555.	6.2	67
100	Identification of a S. aureus virulence factor by activity-based protein profiling (ABPP). Nature Chemical Biology, 2018, 14, 609-617.	3.9	67
101	Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins. Nature Structural and Molecular Biology, 2011, 18, 364-371.	3.6	66
102	Topical Application of Activity-based Probes for Visualization of Brain Tumor Tissue. PLoS ONE, 2012, 7, e33060.	1.1	66
103	A Selective Activity-Based Probe for the Papain Family Cysteine Protease Dipeptidyl Peptidase I/Cathepsin C. Journal of the American Chemical Society, 2006, 128, 5616-5617.	6.6	65
104	Identification of a cDNA encoding an active asparaginyl endopeptidase ofSchistosoma mansoniand its expression inPichia pastoris1. FEBS Letters, 2000, 466, 244-248.	1.3	64
105	The role of cathepsin X in the migration and invasiveness of T lymphocytes. Journal of Cell Science, 2008, 121, 2652-2661.	1.2	63
106	Using Small Molecules To Dissect Mechanisms of Microbial Pathogenesis. ACS Chemical Biology, 2009, 4, 603-616.	1.6	63
107	Design of a Highly Selective Quenched Activity-Based Probe and Its Application in Dual Color Imaging Studies of Cathepsin S Activity Localization. Journal of the American Chemical Society, 2015, 137, 4771-4777.	6.6	63
108	Identification of highly selective covalent inhibitors by phage display. Nature Biotechnology, 2021, 39, 490-498.	9.4	63

#	Article	IF	CITATIONS
109	Lanthanide-Cyclodextrin Complexes as Probes for Elucidating Optical Purity by NMR Spectroscopy. Journal of the American Chemical Society, 1994, 116, 4858-4865.	6.6	62
110	Nuclear cysteine cathepsin variants in thyroid carcinoma cells. Biological Chemistry, 2010, 391, 923-35.	1.2	62
111	Selective activation of PFKL suppresses the phagocytic oxidative burst. Cell, 2021, 184, 4480-4494.e15.	13.5	61
112	Ubiquitin-Like Modifiers and Their Deconjugating Enzymes in Medically Important Parasitic Protozoa. Eukaryotic Cell, 2007, 6, 1943-1952.	3.4	60
113	Toxoplasma gondii Cathepsin L Is the Primary Target of the Invasion-inhibitory Compound Morpholinurea-leucyl-homophenyl-vinyl Sulfone Phenyl. Journal of Biological Chemistry, 2009, 284, 26839-26850.	1.6	60
114	Development of Small Molecule Inhibitors and Probes of Human SUMO Deconjugating Proteases. Chemistry and Biology, 2011, 18, 722-732.	6.2	60
115	Cysteine Protease Inhibitors Block Toxoplasma gondii Microneme Secretion and Cell Invasion. Antimicrobial Agents and Chemotherapy, 2007, 51, 679-688.	1.4	58
116	Functional Studies of Plasmodium falciparum Dipeptidyl Aminopeptidase I Using Small Molecule Inhibitors and Active Site Probes. Chemistry and Biology, 2010, 17, 808-819.	6.2	58
117	Rational Design of Inhibitors and Activity-Based Probes Targeting Clostridium difficile Virulence Factor TcdB. Chemistry and Biology, 2010, 17, 1201-1211.	6.2	58
118	Activity profiling of vacuolar processing enzymes reveals a role for <scp>VPE</scp> during oomycete infection. Plant Journal, 2013, 73, 689-700.	2.8	58
119	Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents. PLoS Pathogens, 2019, 15, e1007722.	2.1	58
120	An in vivo multiplexed small-molecule screening platform. Nature Methods, 2016, 13, 883-889.	9.0	57
121	Sequential Autolytic Processing Activates the Zymogen of Arg-gingipain. Journal of Biological Chemistry, 2003, 278, 10458-10464.	1.6	56
122	Chemical genetic screen identifies <i>Toxoplasma</i> DJ-1 as a regulator of parasite secretion, attachment, and invasion. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10568-10573.	3.3	56
123	Proteomics meets microbiology: technical advances in the global mapping of protein expression and function. Cellular Microbiology, 2005, 7, 1061-1076.	1.1	55
124	Minitags for small molecules: detecting targets of reactive small molecules in living plant tissues using â€~click chemistry'. Plant Journal, 2009, 57, 373-385.	2.8	55
125	Small-molecule inhibition of a depalmitoylase enhances Toxoplasma host-cell invasion. Nature Chemical Biology, 2013, 9, 651-656.	3.9	55
126	Identification of a serine protease inhibitor which causes inclusion vacuole reduction and is lethal to <i><scp>C</scp>hlamydia trachomatis</i> . Molecular Microbiology, 2013, 89, 676-689.	1.2	55

#	Article	IF	CITATIONS
127	Defining the Determinants of Specificity of <i>Plasmodium</i> Proteasome Inhibitors. Journal of the American Chemical Society, 2018, 140, 11424-11437.	6.6	54
128	Caspase-1 activity is required to bypass macrophage apoptosis upon Salmonella infection. Nature Chemical Biology, 2012, 8, 745-747.	3.9	53
129	Treatment of arthritis by macrophage depletion and immunomodulation: Testing an apoptosisâ€mediated therapy in a humanized death receptor mouse model. Arthritis and Rheumatism, 2012, 64, 1098-1109.	6.7	53
130	Frontline Science: Multiple cathepsins promote inflammasome-independent, particle-induced cell death during NLRP3-dependent IL-1β activation. Journal of Leukocyte Biology, 2017, 102, 7-17.	1.5	53
131	Proteasome function is dispensable under normal but not under heat shock conditions in Thermoplasma acidophilum. FEBS Letters, 1998, 425, 87-90.	1.3	52
132	An Optimized Activity-Based Probe for the Study of Caspase-6 Activation. Chemistry and Biology, 2012, 19, 340-352.	6.2	52
133	Labeling of active proteases in fresh-frozen tissues by topical application of quenched activity-based probes. Nature Protocols, 2016, 11, 184-191.	5.5	52
134	A Biocompatible <i>in Vivo</i> Ligation Reaction and Its Application for Noninvasive Bioluminescent Imaging of Protease Activity in Living Mice. ACS Chemical Biology, 2013, 8, 987-999.	1.6	51
135	Cathepsin X is secreted by human osteoblasts, digests CXCL-12 and impairs adhesion of hematopoietic stem and progenitor cells to osteoblasts. Haematologica, 2010, 95, 1452-1460.	1.7	48
136	The Antimalarial Natural Product Salinipostin A Identifies Essential α/β Serine Hydrolases Involved in Lipid Metabolism in P.Âfalciparum Parasites. Cell Chemical Biology, 2020, 27, 143-157.e5.	2.5	48
137	Identification of Potent and Selective Non-covalent Inhibitors of the <i>Plasmodium falciparum</i> Proteasome. Journal of the American Chemical Society, 2014, 136, 13562-13565.	6.6	46
138	Assessing Subunit Dependency of the <i>Plasmodium</i> Proteasome Using Small Molecule Inhibitors and Active Site Probes. ACS Chemical Biology, 2014, 9, 1869-1876.	1.6	46
139	Protein Degradation Systems as Antimalarial Therapeutic Targets. Trends in Parasitology, 2017, 33, 731-743.	1.5	46
140	Optimization of a Protease Activated Probe for Optical Surgical Navigation. Molecular Pharmaceutics, 2018, 15, 750-758.	2.3	46
141	Activity-based protein profiling in bacteria: Applications for identification of therapeutic targets and characterization of microbial communities. Current Opinion in Chemical Biology, 2020, 54, 45-53.	2.8	46
142	Functional Characterization of a SUMO Deconjugating Protease of Plasmodium falciparum Using Newly Identified Small Molecule Inhibitors. Chemistry and Biology, 2011, 18, 711-721.	6.2	45
143	Design of Selective Substrates and Activity-Based Probes for Hydrolase Important for Pathogenesis 1 (HIP1) from <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2016, 2, 807-815.	1.8	45
144	Design of cell-permeable, fluorescent activity-based probes for the lysosomal cysteine protease asparaginyl endopeptidase (AEP)/legumain. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 649-653.	1.0	44

#	Article	IF	CITATIONS
145	Maturation of dendritic cells depends on proteolytic cleavage by cathepsin X. Journal of Leukocyte Biology, 2008, 84, 1306-1315.	1.5	44
146	Myoepithelial cellâ€ s pecific expression of stefin A as a suppressor of early breast cancer invasion. Journal of Pathology, 2017, 243, 496-509.	2.1	44
147	New technologies and their impact on â€~omics' research. Current Opinion in Chemical Biology, 2013, 17, 1-3.	2.8	43
148	Genomics and proteomics. Current Opinion in Chemical Biology, 2007, 11, 1-3.	2.8	42
149	Non-Invasive Imaging of Cysteine Cathepsin Activity in Solid Tumors Using a 64Cu-Labeled Activity-Based Probe. PLoS ONE, 2011, 6, e28029.	1.1	42
150	Substrate specificity of schistosome versus human legumain determined by P1–P3 peptide libraries. Molecular and Biochemical Parasitology, 2002, 121, 99-105.	0.5	41
151	Subfamily-Specific Fluorescent Probes for Cysteine Proteases Display Dynamic Protease Activities during Seed Germination. Plant Physiology, 2015, 168, 1462-1475.	2.3	41
152	The protease cathepsin L regulates Th17 cell differentiation. Journal of Autoimmunity, 2015, 65, 56-63.	3.0	41
153	Strategies for Tuning the Selectivity of Chemical Probes that Target Serine Hydrolases. Cell Chemical Biology, 2020, 27, 937-952.	2.5	41
154	Biochemical Analysis of the 20 S Proteasome of Trypanosoma brucei. Journal of Biological Chemistry, 2003, 278, 15800-15808.	1.6	40
155	Novel Aza Peptide Inhibitors and Active-Site Probes of Papain-Family Cysteine Proteases. ChemBioChem, 2006, 7, 943-950.	1.3	40
156	Bifunctional Probes of Cathepsin Protease Activity and pH Reveal Alterations in Endolysosomal pHÂduring Bacterial Infection. Cell Chemical Biology, 2016, 23, 793-804.	2.5	40
157	A major cathepsin B protease from the liver fluke Fasciola hepatica has atypical active site features and a potential role in the digestive tract of newly excysted juvenile parasites. International Journal of Biochemistry and Cell Biology, 2009, 41, 1601-1612.	1.2	39
158	Development of Activity-Based Probes for Cathepsin X. ACS Chemical Biology, 2011, 6, 563-572.	1.6	39
159	Dual-Modality Activity-Based Probes as Molecular Imaging Agents for Vascular Inflammation. Journal of Nuclear Medicine, 2016, 57, 1583-1590.	2.8	39
160	Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer. Oncotarget, 2015, 6, 27008-27022.	0.8	39
161	Inhibition of cathepsin B reduces β-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate β-secretase of Alzheimer's disease. Biological Chemistry, 2005, 386, 1325-1325.	1.2	38
162	A protease-activated, near-infrared fluorescent probe for early endoscopic detection of premalignant gastrointestinal lesions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38

#	Article	IF	CITATIONS
163	Biochemical characterization of Plasmodium falciparum dipeptidyl aminopeptidase 1. Molecular and Biochemical Parasitology, 2011, 175, 10-20.	0.5	37
164	Engineered Hybrid Dimers: Tracking the Activation Pathway of Caspase-7. Molecular Cell, 2006, 23, 523-533.	4.5	36
165	Development of Calpain-specific Inactivators by Screening of Positional Scanning Epoxide Libraries. Journal of Biological Chemistry, 2007, 282, 9600-9611.	1.6	36
166	Live Cell Imaging and Profiling of Cysteine Cathepsin Activity Using a Quenched Activity-Based Probe. Methods in Molecular Biology, 2017, 1491, 145-159.	0.4	36
167	Design, syntheses, and evaluation of Taspase1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5086-5090.	1.0	35
168	Coupling Protein Engineering with Probe Design To Inhibit and Image Matrix Metalloproteinases with Controlled Specificity. Journal of the American Chemical Society, 2013, 135, 9139-9148.	6.6	35
169	Legumain is activated in macrophages during pancreatitis. American Journal of Physiology - Renal Physiology, 2016, 311, G548-G560.	1.6	35
170	Cathepsin Activity-Based Probes and Inhibitor for Preclinical Atherosclerosis Imaging and Macrophage Depletion. PLoS ONE, 2016, 11, e0160522.	1.1	34
171	Fluorescent Triazole Urea Activityâ€Based Probes for the Singleâ€Cell Phenotypic Characterization of <i>Staphylococcus aureus</i> . Angewandte Chemie - International Edition, 2019, 58, 5643-5647.	7.2	34
172	Active cathepsins B, L, and S in murine and human pancreatitis. American Journal of Physiology - Renal Physiology, 2012, 303, G894-G903.	1.6	33
173	Cysteine Cathepsin Inhibitors as Anti-Ebola Agents. ACS Infectious Diseases, 2016, 2, 173-179.	1.8	33
174	The Apoptosis Repressor with a CARD Domain (ARC) Gene Is a Direct Hypoxia-Inducible Factor 1 Target Gene and Promotes Survival and Proliferation of VHL-Deficient Renal Cancer Cells. Molecular and Cellular Biology, 2014, 34, 739-751.	1.1	32
175	Chemical Proteomics Applied to Target Identification and Drug Discovery. BioTechniques, 2005, 38, 175-177.	0.8	31
176	A Coupled Protein and Probe Engineering Approach for Selective Inhibition and Activity-Based Probe Labeling of the Caspases. Journal of the American Chemical Society, 2013, 135, 9130-9138.	6.6	31
177	Chemiluminescent Protease Probe for Rapid, Sensitive, and Inexpensive Detection of Live <i>Mycobacterium tuberculosis</i> . ACS Central Science, 2021, 7, 803-814.	5.3	31
178	Deletion of the rodent malaria ortholog for falcipain-1 highlights differences between hepatic and blood stage merozoites. PLoS Pathogens, 2017, 13, e1006586.	2.1	31
179	Serine proteases and proteaseâ€activated receptor 2 mediate the proinflammatory and algesic actions of diverse stimulants. British Journal of Pharmacology, 2014, 171, 3814-3826.	2.7	29
180	A General Solid Phase Method for the Preparation of Diverse Azapeptide Probes Directed Against Cysteine Proteases. Organic Letters, 2005, 7, 5649-5652.	2.4	28

#	Article	IF	CITATIONS
181	A Fragmenting Hybrid Approach for Targeted Delivery of Multiple Therapeutic Agents to the Malaria Parasite. ChemMedChem, 2011, 6, 415-419.	1.6	28
182	Identification of a myeloidâ€derived suppressor cell cystatinâ€like protein that inhibits metastasis. FASEB Journal, 2011, 25, 2626-2637.	0.2	28
183	Three-dimensional cultures modeling premalignant progression of human breast epithelial cells: role of cysteine cathepsins. Biological Chemistry, 2012, 393, 1405-1416.	1.2	28
184	Synthesis and evaluation of aza-peptidyl inhibitors of the lysosomal asparaginyl endopeptidase, legumain. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1340-1343.	1.0	28
185	Influenza A virus elevates active cathepsin B in primary murine DC. International Immunology, 2007, 19, 645-655.	1.8	27
186	4-Bromophenacyl Bromide Specifically Inhibits Rhoptry Secretion during Toxoplasma Invasion. PLoS ONE, 2009, 4, e8143.	1.1	27
187	A Clinical Wide-Field Fluorescence Endoscopic Device for Molecular Imaging Demonstrating Cathepsin Protease Activity in Colon Cancer. Molecular Imaging and Biology, 2016, 18, 820-829.	1.3	27
188	Synthetic Fluorogenic Peptides Reveal Dynamic Substrate Specificity of Depalmitoylases. Cell Chemical Biology, 2019, 26, 35-47.e7.	2.5	26
189	The Clinical Drug Ebselen Attenuates Inflammation and Promotes Microbiome Recovery in Mice after Antibiotic Treatment for CDI. Cell Reports Medicine, 2020, 1, 100005.	3.3	26
190	Pathways Accessory to Proteasomal Proteolysis Are Less Efficient in Major Histocompatibility Complex Class I Antigen Production. Journal of Biological Chemistry, 2003, 278, 10013-10021.	1.6	25
191	The cryoâ€ <scp>EM</scp> structure of the <i>Plasmodium falciparum</i> 20S proteasome and its use in the fight against malaria. FEBS Journal, 2016, 283, 4238-4243.	2.2	25
192	Activityâ€based probes for the multicatalytic proteasome. FEBS Journal, 2017, 284, 1540-1554.	2.2	25
193	Solid-Phase Synthesis of Double-Headed Epoxysuccinyl Activity-Based Probes for Selective Targeting of Papain Family Cysteine Proteases. ChemBioChem, 2005, 6, 824-827.	1.3	24
194	Rapid visualization of nonmelanoma skin cancer. Journal of the American Academy of Dermatology, 2017, 76, 209-216.e9.	0.6	24
195	Chemical Tools for Selective Activity Profiling of Endogenously Expressed MMP-14 in Multicellular Models. ACS Chemical Biology, 2018, 13, 2645-2654.	1.6	24
196	Design of Opticalâ€Imaging Probes by Screening of Diverse Substrate Libraries Directly in Diseaseâ€Tissue Extracts. Angewandte Chemie - International Edition, 2020, 59, 19143-19152.	7.2	24
197	Fluorescent image-guided surgery in breast cancer by intravenous application of a quenched fluorescence activity-based probe for cysteine cathepsins in a syngeneic mouse model. EJNMMI Research, 2020, 10, 111.	1.1	24
198	Specificity of aza-peptide electrophile activity-based probes of caspases. Cell Death and Differentiation, 2007, 14, 727-732.	5.0	23

#	Article	IF	CITATIONS
199	Plasmodium Dipeptidyl Aminopeptidases as Malaria Transmission-Blocking Drug Targets. Antimicrobial Agents and Chemotherapy, 2013, 57, 4645-4652.	1.4	23
200	Probes to Monitor Activity of the Paracaspase MALT1. Chemistry and Biology, 2015, 22, 139-147.	6.2	23
201	Inhibition of cathepsin proteases attenuates migration and sensitizes aggressive N-Myc amplified human neuroblastoma cells to doxorubicin. Oncotarget, 2015, 6, 11175-11190.	0.8	22
202	The glucosyltransferase activity of C. difficile Toxin B is required for disease pathogenesis. PLoS Pathogens, 2020, 16, e1008852.	2.1	21
203	Substrate specificity of Staphylococcus aureus cysteine proteases – Staphopains A, B and C. Biochimie, 2012, 94, 318-327.	1.3	20
204	In Vivo Imaging and Biochemical Characterization of Protease Function Using Fluorescent Activityâ€Based Probes. Current Protocols in Chemical Biology, 2013, 5, 25-44.	1.7	20
205	Dissecting Protein Function Using Chemical Proteomic Methods. QSAR and Combinatorial Science, 2005, 24, 261-269.	1.5	19
206	Cathepsin X-mediated β2 integrin activation results in nanotube outgrowth. Cellular and Molecular Life Sciences, 2009, 66, 1126-1134.	2.4	19
207	Ferrous iron-dependent drug delivery enables controlled and selective release of therapeutic agents in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18244-18249.	3.3	19
208	Cathepsin B trafficking in thyroid carcinoma cells. Thyroid Research, 2011, 4, S2.	0.7	18
209	Membrane skeletal association and postâ€translational allosteric regulation of <i>Toxoplasma gondii</i> GAPDH1. Molecular Microbiology, 2017, 103, 618-634.	1.2	18
210	Development of an activity-based probe for acyl-protein thioesterases. PLoS ONE, 2018, 13, e0190255.	1.1	18
211	Identification of covalent inhibitors that disrupt M.Âtuberculosis growth by targeting multiple serine hydrolases involved in lipid metabolism. Cell Chemical Biology, 2022, 29, 897-909.e7.	2.5	18
212	Applications of Small Molecule Probes in Dissecting Mechanisms of Bacterial Virulence and Host Responses. Biochemistry, 2013, 52, 5985-5996.	1.2	17
213	TGF-ß Regulates Cathepsin Activation during Normal and Pathogenic Development. Cell Reports, 2018, 22, 2964-2977.	2.9	17
214	Use of Activity-Based Probes to Develop High Throughput Screening Assays That Can Be Performed in Complex Cell Extracts. PLoS ONE, 2010, 5, e11985.	1.1	17
215	Insulin-Like Growth Factor II Receptor-Mediated Intracellular Retention of Cathepsin B Is Essential for Transformation of Endothelial Cells by Kaposi's Sarcoma-Associated Herpesvirus. Journal of Virology, 2007, 81, 8050-8062.	1.5	15
216	Evaluation of α,β-unsaturated ketone-based probes for papain-family cysteine proteases. Bioorganic and Medicinal Chemistry, 2009, 17, 1071-1078.	1.4	15

MATTHEW M BOGYO

#	Article	IF	CITATIONS
217	Disruption of gingipain oligomerization into non-covalent cell-surface attached complexes. Biological Chemistry, 2012, 393, 971-977.	1.2	15
218	Loss of Prkar1a leads to Bcl-2 family protein induction and cachexia in mice. Cell Death and Differentiation, 2014, 21, 1815-1824.	5.0	15
219	Toxoplasma DJ-1 Regulates Organelle Secretion by a Direct Interaction with Calcium-Dependent Protein Kinase 1. MBio, 2017, 8, .	1.8	15
220	Synthetic and biological approaches to map substrate specificities of proteases. Biological Chemistry, 2019, 401, 165-182.	1.2	15
221	Plasmodium berghei K13 Mutations Mediate <i>In Vivo</i> Artemisinin Resistance That Is Reversed by Proteasome Inhibition. MBio, 2020, 11, .	1.8	15
222	A Protease-Activated Fluorescent Probe Allows Rapid Visualization of Keratinocyte Carcinoma during Excision. Cancer Research, 2020, 80, 2045-2055.	0.4	15
223	Characterization of Serine Hydrolases Across Clinical Isolates of Commensal Skin Bacteria <i>Staphylococcus epidermidis</i> Using Activity-Based Protein Profiling. ACS Infectious Diseases, 2020, 6, 930-938.	1.8	15
224	A Substrate-Inspired Probe Monitors Translocation, Activation, and Subcellular Targeting of Bacterial Type III Effector Protease AvrPphB. Chemistry and Biology, 2013, 20, 168-176.	6.2	14
225	Trioxolane-Mediated Delivery of Mefloquine Limits Brain Exposure in a Mouse Model of Malaria. ACS Medicinal Chemistry Letters, 2015, 6, 1145-1149.	1.3	14
226	Proteolytic processing and activation of gingipain zymogens secreted by T9SS of Porphyromonas gingivalis. Biochimie, 2019, 166, 161-172.	1.3	14
227	Structural Basis for the Inhibitor and Substrate Specificity of the Unique Fph Serine Hydrolases of <i>Staphylococcus aureus</i> . ACS Infectious Diseases, 2020, 6, 2771-2782.	1.8	14
228	Screening for Selective Small Molecule Inhibitors of the Proteasome Using Activityâ€Based Probes. Methods in Enzymology, 2005, 399, 609-622.	0.4	13
229	Short-Wave Infrared Fluorescence Chemical Sensor for Detection of Otitis Media. ACS Sensors, 2020, 5, 3411-3419.	4.0	13
230	Discovery of small molecules that normalize the transcriptome and enhance cysteine cathepsin activity in progranulin-deficient microglia. Scientific Reports, 2020, 10, 13688.	1.6	13
231	Pre-Trained Deep Convolutional Neural Network for Clostridioides Difficile Bacteria Cytotoxicity Classification Based on Fluorescence Images. Sensors, 2020, 20, 6713.	2.1	13
232	Blocking Palmitoylation of Toxoplasma gondii Myosin Light Chain 1 Disrupts Glideosome Composition but Has Little Impact on Parasite Motility. MSphere, 2021, 6, .	1.3	13
233	Phosphoramidates as Novel Activityâ€Based Probes for Serine Proteases. ChemBioChem, 2014, 15, 1106-1110.	1.3	12
234	Leveraging Peptide Substrate Libraries to Design Inhibitors of Bacterial Lon Protease. ACS Chemical Biology, 2019, 14, 2453-2462.	1.6	12

#	Article	IF	CITATIONS
235	Calcium Regulates the Activity and Structural Stability of Tpr, a Bacterial Calpain-like Peptidase. Journal of Biological Chemistry, 2015, 290, 27248-27260.	1.6	11
236	Detection of Active Caspases During Apoptosis Using Fluorescent Activity-Based Probes. Methods in Molecular Biology, 2016, 1419, 27-39.	0.4	11
237	Covalent Modifiers of Botulinum Neurotoxin Counteract Toxin Persistence. ACS Chemical Biology, 2019, 14, 76-87.	1.6	11
238	Activity-Based Diagnostics: Recent Advances in the Development of Probes for Use with Diverse Detection Modalities. ACS Chemical Biology, 2022, 17, 281-291.	1.6	11
239	Increased nucleolar localization of SpiA3G in classically but not alternatively activated macrophages. FEBS Letters, 2010, 584, 2201-2206.	1.3	10
240	Molecular imaging and validation of margins in surgically excised nonmelanoma skin cancer specimens. Journal of Medical Imaging, 2019, 6, 1.	0.8	10
241	Finding enzymes that are actively involved in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2379-2380.	3.3	8
242	Microscopic Detection of Quenched Activity-Based Optical Imaging Probes Using an Antibody Detection System: Localizing Protease Activity. Molecular Imaging and Biology, 2014, 16, 608-618.	1.3	8
243	Design and Synthesis of Activity-Based Probes and Inhibitors for Bleomycin Hydrolase. Chemistry and Biology, 2015, 22, 995-1001.	6.2	8
244	Validation of near infrared fluorescence (NIRF) probes in vivo with dual laser NIRF endoscope. PLoS ONE, 2018, 13, e0206568.	1.1	8
245	A Biocompatible "Split Luciferin―Reaction and Its Application for Nonâ€Invasive Bioluminescent Imaging of Protease Activity in Living Animals. Current Protocols in Chemical Biology, 2014, 6, 169-189.	1.7	8
246	Solid-Phase Methods for the Preparation of Epoxysuccinate-Based Inhibitors of Cysteine Proteases. ACS Combinatorial Science, 2006, 8, 802-804.	3.3	7
247	Metabolomics cuts to the chase to chase the cuts. Nature Chemical Biology, 2009, 5, 5-6.	3.9	7
248	The <i>Toxoplasma gondii</i> Active Serine Hydrolase 4 Regulates Parasite Division and Intravacuolar Parasite Architecture. MSphere, 2018, 3, .	1.3	7
249	Treatment of rat thyrocytes inÂvitro with cathepsin B and L inhibitors results in disruption of primary cilia leading to redistribution of the trace amine associated receptor 1 to the endoplasmic reticulum. Biochimie, 2019, 166, 270-285.	1.3	7
250	Characterization ofP. falciparumdipeptidyl aminopeptidase 3 specificity identifies differences in amino acid preferences between peptideâ€based substrates and covalent inhibitors. FEBS Journal, 2019, 286, 3998-4023.	2.2	7
251	Identification of PlasmodiumÂdipeptidyl aminopeptidase allosteric inhibitors by high throughput screening. PLoS ONE, 2019, 14, e0226270.	1.1	7
252	Introduction to the Special Issue on Proteases and Proteolysis in Health and Disease. FEBS Journal, 2017, 284, 1392-1393.	2.2	6

#	Article	IF	CITATIONS
253	Methods for analysis of near-infrared (NIR) quenched-fluorescent contrast agents in mouse models of cancer. Methods in Enzymology, 2020, 639, 141-166.	0.4	6
254	Procathepsin V Is Secreted in a TSH Regulated Manner from Human Thyroid Epithelial Cells and Is Accessible to an Activity-Based Probe. International Journal of Molecular Sciences, 2020, 21, 9140.	1.8	5
255	The Thyroid Hormone Transporter Mct8 Restricts Cathepsin-Mediated Thyroglobulin Processing in Male Mice through Thyroid Auto-Regulatory Mechanisms That Encompass Autophagy. International Journal of Molecular Sciences, 2021, 22, 462.	1.8	5
256	Catalytic linkage between caspase activity and proteostasis in <i>Archaea</i> . Environmental Microbiology, 2019, 21, 286-298.	1.8	4
257	Toxoplasma gondii serine hydrolases regulate parasite lipid mobilization during growth and replication within the host. Cell Chemical Biology, 2021, 28, 1501-1513.e5.	2.5	4
258	A â€~Swiss army knife' probe for metastatic cancers. Nature Materials, 2021, 20, 1312-1314.	13.3	4
259	Integration of bioinformatic and chemoproteomic tools for the study of enzyme conservation in closely related bacterial species. Methods in Enzymology, 2022, 664, 1-22.	0.4	3
260	Uncovering an overlooked consequence of phosphorylation: change in cysteine reactivity. Nature Methods, 2022, 19, 281-283.	9.0	3
261	A degrading business: the biology of proteolysis. Trends in Cell Biology, 1997, 7, 333-335.	3.6	2
262	Finding the needles in the haystack: mapping constitutive proteolytic events in vivo. Biochemical Journal, 2007, 407, e1-2.	1.7	2
263	An Automatic Analysis System for High-Throughput Clostridium Difficile Toxin Activity Screening. Applied Sciences (Switzerland), 2018, 8, 1512.	1.3	2
264	Fluorescent Triazole Urea Activityâ€Based Probes for the Singleâ€Cell Phenotypic Characterization of <i>Staphylococcus aureus</i> . Angewandte Chemie, 2019, 131, 5699-5703.	1.6	2
265	Design of Opticalâ€Imaging Probes by Screening of Diverse Substrate Libraries Directly in Diseaseâ€Tissue Extracts. Angewandte Chemie, 2020, 132, 19305-19314.	1.6	2
266	INHIBITORS OF CATHEPSIN B REDUCE PRODUCTION OF BETAâ€AMYLOID IN REGULATED SECRETORY VESICLES: A NOVEL CYSTEINE PROTEASE PATHWAY AS BETAâ€SECRETASE FOR GENERATING BETAâ€AMYLOID OF ALZHEIMER DISEASE. FASEB Journal, 2006, 20, A1135.	Α 	2
267	Friend or Foe? Turning a Host Defense Protein Into a Pathogen's Accomplice. Chemistry and Biology, 2008, 15, 879-880.	6.2	1
268	Response to Comment on "A small-molecule antivirulence agent for treating <i>Clostridium difficile</i> infection― Science Translational Medicine, 2016, 8, 370tr2.	5.8	1
269	New Blood Test SEEKs To Detect and Localize Cancer before It's Too Late. Biochemistry, 2018, 57, 1561-1562.	1.2	1
270	Localization and identification of protease activity in acute pancreatitis using in vivo molecular imaging. Journal of the American College of Surgeons, 2010, 211, S11-S12.	0.2	0

#	Article	IF	CITATIONS
271	Inside Cover: A Fragmenting Hybrid Approach for Targeted Delivery of Multiple Therapeutic Agents to the Malaria Parasite (ChemMedChem 3/2011). ChemMedChem, 2011, 6, 382-382.	1.6	0
272	A Screen of Covalent Inhibitors In <i>Mycobacterium Tuberculosis</i> Identifies Serine Hydrolases Involved in Lipid Metabolism as Potential Therapeutic Targets. SSRN Electronic Journal, 0, , .	0.4	0
273	The Antimalarial Natural Product Salinipostin a Identifies Essential α/β Serine Hydrolases Involved in Lipid Metabolism in <i>P. Falciparum</i> Parasites. SSRN Electronic Journal, 0, , .	0.4	0
274	Abstract OR-12: Cryo-EM of Human and Parasite Proteasomes for Structure-Based Drug Design. International Journal of Biomedicine, 2019, 9, S10-S11.	0.1	0